[1] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.
[2] ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007.
[3] BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
[4] COSTA-JUSSà M R, ALLAUZEN A, BARRAULT L, et al. Introduction to the special issue on deep learning approaches for machine translation[J]. Computer Speech & Language, 2017, 46: 367-373.
[5] FAYEK H M, LECH M, CAVEDON L. Evaluating deep learning architectures for speech emotion recognition[J]. Neural Networks, 2017, 92: 60-68.
[6] XING J L, LI K, HU W M, et al. Diagnosing deep learning models for high accuracy age estimation from a single image[J]. Pattern Recognition, 2017, 66: 106-116.
[7] TSANTEKIDIS A, PASSALIS N, TEFAS A, et al. Forecasting stock prices from the limit order book using convolutional neural networks[C]//Proceedings of the 2017 IEEE 19th Conference on Business Informatics. Piscataway: IEEE, 2017: 7-12.
[8] 潘水洋, 刘俊玮, 王一鸣. 基于神经网络的股票收益率预测研究[J]. 浙江大学学报(理学版), 2019, 46(5): 550-555.
PAN S Y, LIU J W, WANG Y M. Forecasting stock returns with artificial neural networks[J]. Journal of Zhejiang University (Science Edition), 2019, 46(5): 550-555.
[9] QIU J Y, WANG B, ZHOU C J. Forecasting stock prices with long-short term memory neural network based on attention mechanism[J]. PLoS One, 2020, 15(1): e0227222.
[10] 姚远, 张朝阳. 基于HP-LSTM模型的股指价格预测方法[J]. 计算机工程与应用, 2021, 57(24): 296-304.
YAO Y, ZHANG Z Y. Stock index price forecasting method based on HP filter[J]. Computer Engineering and Applications, 2021, 57(24): 296-304.
[11] 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302.
FANG Y Q, LU Z, GE J W. Forecasting stock prices with combined RMSE loss LSTM-CNN model[J]. Computer Engineering and Applications, 2022, 58(9): 294-302.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 6000-6010.
[13] DING Q, WU S, SUN H, et al. Hierarchical multi-scale Gaussian Transformer for stock movement prediction[C]//Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence(IJCAI’20), 2020:4640-4646.
[14] 陈诗乐, 王笑, 周昌军. 基于GA-Transformer模型的多因子股票预测[J]. 广州大学学报(自然科学版), 2021, 20(1): 44-55.
CHEN S L, WANG X, ZHOU C J. Multi-factor stock forecasting method based on a GA-Transformer model[J]. Journal of Guangzhou University (Natural Science Edition), 2021, 20(1): 44-55.
[15] 任佳屹, 王爱银. 融合因果注意力Transformer模型的股价预测研究[J]. 计算机工程与应用, 2023, 59(13): 325-334.
REN J Y, WANG A Y. Causal attention Transformer model for stock price prediction[J]. Computer Engineering and Applications, 2023, 59(13): 325-334.
[16] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11106-11115.
[17] LIU S, YU H, LIAO C, et al. Pyraformer: low-complexity pyramidal attention for long-range time series modeling and forecasting[C]//Proceedings of the 2022 International Conference on Learning Representations, Apr 25-29, 2022: 1-20.
[18] WU H, XU J, WANG J, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems, 2021: 22419-22430.
[19] ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 27268-27286.
[20] PASSALIS N, TEFAS A, KANNIAINEN J, et al. Deep adaptive input normalization for time series forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3760-3765.
[21] KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C]//Proceedings of the International Conference on Learning Representations, 2022.
[22] LIU Y, WU H X, WANG J M, et al. Non-stationary transformers: exploring the stationarity in time series forecasting[C]//Advances in Neural Information Processing Systems, 2022: 9881-9893.
[23] 陈东洋, 毛力. 融合增量学习与Transformer模型的股价预测研究[J]. 计算机科学与探索, 2024, 18(7): 1889-1899.
CHEN D Y, MAO L. Research on stock price prediction integrating incremental learning and Transformer model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1889-1899.
[24] 林明松, 杨晓梅, 杨志霞. 结构化最大间隔双支持向量机在股票预测中的应用[J]. 计算机工程与应用, 2024, 60(11): 346-355.
LIN M S, YANG X M, YANG Z X. Structured maximum margin twin support vector machine and its application in stock trend prediction[J]. Computer Engineering and Applications, 2024, 60(11): 346-355. |