[1] 毛震东,赵博文,白嘉萌,等. 基于传播意图特征的虚假新闻检测方法综述[J]. 信号处理, 2022, 38(6):1155-1169.
MAO Z D, ZHAO B W, BAI J M, et al. Review of fake news detection methods based on the features of propagation intention[J]. Journal of Signal Processing, 2022, 38(6):1155-1169.
[2] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016:3818-3824.
[3] 毕蓓,潘慧瑶,陈峰,等. 基于异构图注意力网络的微博谣言监测模型[J]. 计算机应用, 2021, 41(12):3546-3550.
BI B, PAN H, CHEN F, et al. Microblog rumor detection model based on heterogeneous graph attention network[J]. Journal of Computer Applications, 2021, 41(12):3546-3550.
[4] 高玉君,梁刚,蒋方婷,等. 社会网络谣言检测综述[J]. 电子学报, 2020, 48(7):1421-1435.
GAO Y J, LIANG G, JIANG F T, et al. Social network rumor detection: a survey[J]. Acta Electronica Sinica, 2020, 48(7):1421-1435.
[5] KUMAR A, SANGWAN S R. Rumor detection using machine learning techniques on social media[C]//Proceedings of the Conference on Innovative Computing and Communications, 2019: 213-221.
[6] KUMAR S, CARLEY K M. Tree LSTMs with convolution units to predict stance and rumor veracity in social media conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 5047-5058.
[7] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web, 2011: 675-684.
[8] YANG F, LIU Y, YU X, et al. Automatic detection of rumor on sina weibo[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data, 2012: 1-7.
[9] KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]//Proceedings of the 13th International Conference on Data Mining, 2013: 1103-1108.
[10] CHEN T, YIN H, CHEN H, et al. Air: attentional intention-aware recommender systems[C]//Proceedings of the 35th International Conference on Data Engineering, 2019: 304-315.
[11] YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017:3901-3907.
[12] 范昊,何灏. 融合上下文特征和BERT词嵌入的新闻标题分类研究[J]. 情报科学, 2022, 40(6): 90-97.
FAN H, HE H. News title classification based on contextual features and bert word embedding[J]. Information Science, 2022, 40(6): 90-97.
[13] HU Y, PAN Q, HOU W, et al. Rumor spreading model with the different attitudes towards rumors[J]. Physica A: Statistical Mechanics and its Applications, 2018, 502: 331-344.
[14] SHIRALKAR P, FLAMMINI A, MENCZER F, et al. Finding streams in knowledge graphs to support fact checking[C]//Proceedings of the IEEE International Conference on Data Mining, 2017: 859-864.
[15] PAN J Z, PAVLOVA S, LI C, et al. Content based fake news detection using knowledge graphs[C]//Proceedings of the 17th International Semantic Web Conference, 2018: 669-683.
[16] CUI L, SEO H, TABAR M, et al. DETERRENT: knowledge guided grapy attention network for detecting healthcare misinformation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 492-502.
[17] 郭秋实,李晨曦,刘金硕,等. 引入知识表示的图卷积网络谣言检测方法[J]. 计算机应用研究, 2022, 39(7): 2032-2036.
GUO Q S, LI C X, LIU J S, et, al. Rumor detection with knowledge representation and graph convolutional network [J]. Application Research of Computers, 2022, 39(7): 2032-2036.
[18] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing, 2017: 6000-6100.
[20] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151.
[21] SONG C, YANG C, CHEN H, et al. CED: credible early detection of social media rumors[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(8): 3035-3047.
[22] SHENG Q, CAO J, ZHANG X, et al. Article reranking by memory-enhanced key sentence matching for detecting previously fact-checked claims[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Proceedings, 2021: 5468-5481.
[23] KOCHKINA E, LIAKATA M, ZUBIAGA A. All-in-one: multi-task learning for rumor verification[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3402-3413.
[24] AUGENSTEIN I, LIOMA C, WANG D, et al. MultiFC: a real-world multi-domain dataset for evidence-based fact checking of claims[C]//Proceedings of the 9th International Joint Conference on Natural Language Processing, 2019: 4685-4697.
[25] SHENG Q, CAO J, ZHANG X, et al. Zoom out and observe: news environment perception for fake news detection[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022: 4543-4556.
[26] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional lstm and other neural network architectures[J]. Neural Network, 2005, 18(5/6):602-610.
[27] WANG Y, MA F, JIN Z, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 849-857.
[28] ZHANG X, CAO J, LI X, et al. Mining dual emotion for fake news detection[C]//Proceedings of the Web Conference, 2021: 3465-3476.
[29] ZHU H, KONIUSZ P. Simple spectral graph convolution[C]//Proceedings of the International Conference on Learning Representation, 2021: 151-163.
[30] POPAT K, MUKHERJEE S, YATES A, et al. Declare: debunking fake news and false claims using evidence-aware deep learning[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 22-32.
[31] VO N, LEE K. Hierarchical multi-head attentive network for evidence-aware fake news detection[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 965-975. |