计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 139-147.DOI: 10.3778/j.issn.1002-8331.2312-0108

• 模式识别与人工智能 • 上一篇    下一篇

基于局部和全局特征聚合的虚假新闻检测方法

杨书新,丁祺伟   

  1. 江西理工大学 信息工程学院, 江西 赣州 341000
  • 出版日期:2025-05-01 发布日期:2025-04-30

Fake News Detection Method Based on Local and Global Feature Aggregation

YANG Shuxin, DING Qiwei   

  1. School of Information Engineering, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 在虚假新闻检测的问题上,现有的方法大多通过捕捉上下文语义特征、对照外部知识库来判断新闻的真实性,但很多研究人员忽略了新闻在发布时期各大社交媒体的新闻生态。针对上述问题,提出一种基于局部和全局特征聚合的虚假新闻检测方法。具体来说,设计了全局环境感知模块和局部环境感知模块,其中全局环境感知模块通过均值池化、全连接、注意力机制等操作获得全局特征,局部环境感知模块通过将文本向量进行聚类、均值池化、哈达玛乘积、多层感知器、注意力机制等操作获得局部特征。利用融合机制将这些特征进行聚合,与其他虚假新闻检测器协同工作,用以验证新闻的真实性。在微博和推特两个新闻文本数据集上进行了对比实验,实验结果表明提出的方法可以有效提取全局和局部环境中的新闻文本特征,从而提高检测精度。

关键词: 虚假新闻检测, 注意力机制, 特征提取, 社交媒体

Abstract: On the issue of fake news detection, existing works rely on capturing contextual semantic features and referencing external knowledge bases to judge the authenticity of news, while neglecting the public opinion orientation at the time of news publication. To fill the gap, a fake news detection method based on local and global feature aggregation is proposed. In a more specific context, both a global environment perception module and a local environment perception module have been designed. The global environment perception module utilizes operations such as average pooling, fully connected layers, and attention mechanisms to extract global features, The local environment perception module obtains local features by performing operations such as clustering, average pooling, hadamard product, multi-layer perceptron, and attention mechanism on text vectors. Subsequently, these features are consolidated using a fusion mechanism and, in the end, work in conjunction with other fake news detectors to authenticate the news. Comparative experiments are conducted on news text datasets from both Weibo and Twitter. The experimental results demonstrate that the proposed method is effective in extracting news text features from both global and local environments, consequently enhancing detection accuracy.

Key words: fake news detection, attention mechanism, feature extraction, social media