[1] CHEN G, WANG H, CHEN K, et al. A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 936-953.
[2] CHEN Z, LIU C, FILARETOV V, et al. Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images[J]. Remote Sensing, 2023, 15(8): 2071.
[3] 朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究[J]. 自动化学报, 2023, 49(2): 415-424.
ZHU Y, FANG G S, ZHENG B B, et al. Research on detection method of refined rotated boxes in remote sensing[J]. Acta?Automatica?Sinica, 2023, 49(2): 415-424.
[4] 张河山, 谭鑫, 范梦伟, 等. 无人机高空航拍视角下小尺度车辆精确检测方法[J]. 交通运输系统工程与信息, 2024, 24(3): 299-309.
ZHANG H S, TAN X, FAN M W, et al. Accurate detection method of small-scale vehicles from perspective of unmanned aerial vehicle high-altitude aerial photography[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(3): 299-309.
[5] QIU Y, LU Y, WANG Y, et al. IDOD-YOLOV7: image-dehazing YOLOV7 for object detection in low-light foggy traffic environments[J]. Sensors, 2023, 23(3): 1347.
[6] 刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 630119.
LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119.
[7] KAPANIA S, SAINI D, GOYAL S, et al. Multi object tracking with UAVs using deep SORT and YOLOv3 retinanet detection framework[C]//Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems, 2020: 1-6.
[8] LANG K, YANG M, WANG H, et al. Improved one-stage detectors with neck attention block for object detection in remote sensing [J]. Remote Sensing, 2022, 14(22): 5805.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision(ECCV 2016), 2016: 21-37.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] FANG W, WANG L, REN P. Tinier-YOLO: a real-time object detection method for constrained environments[J]. IEEE Access, 2019, 8: 1935-1944.
[13] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[14] RAZA M A, BINT E, NAEEM H, et al. Birdview retina-net: small-scale object detector for unmanned aerial vehicles[C]//Proceedings of the 2021 16th International Conference on Emerging Technologies (ICET), 2021: 1-6.
[15] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3520-3529.
[16] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[17] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[18] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020: 213-229.
[19] ZHU M, KONG E. Multi-scale fusion uncrewed aerial vehicle detection based on RT-DETR[J]. Electronics, 2024, 13(8): 1489.
[20] DAI Z, CAI B, LIN Y, et al. UP-DETR: unsupervised pre-training for object detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1601-1610.
[21] 刘袁缘, 王超凡, 王文斌, 等. 面向多种天气场景下目标检测的多域动态平均教师模型[J]. 计算机辅助设计与图形学学报, 2024, 36(3): 388-398.
LIU Y Y, WANG C F, WANG W B, et al. Multi-domain dynamic mean teacher for object detection in complex weather[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(3): 388-398.
[22] 苏佳, 梁奔, 冯康康, 等. 基于维度交互和跨层尺度级联的雾天目标检测算法[J]. 微电子学与计算机, 2024, 41(1): 53-62.
SU J, LIANG B, FENG K K, et al. Object detection algorithm in foggy weather based on dimensional interaction and cross-layer scale cascade[J]. Microelectronics & Computer, 2024, 41(1): 53-62.
[23] DONG H, PAN J, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157-2167.
[24] ZHANG Y, GE H, LIN Q, et al. Research of maritime object detection method in foggy environment based on improved model SRC-YOLO[J]. Sensors, 2022, 22(20): 7786.
[25] LI C, GUO C, GUO J, et al. PDR-Net: perception-inspired single image dehazing network with refinement[J]. IEEE Transactions on Multimedia, 2019, 22(3): 704-716.
[26] HUANG S C, LE T H, JAW D W. DSNet: joint semantic learning for object detection in inclement weather conditions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(8): 2623-2633.
[27] ZHANG Z D, ZHANG B, LAN Z C, et al. FINet: an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71 (6): 1-8.
[28] QIN X, WANG Z, BAI Y, et al. FFA-Net: feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020: 11908-11915.
[29] LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10096-10105.
[30] LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection [J]. arXiv:2303.09030, 2023.
[31] YAO Q, HU X, LEI H. Multiscale convolutional neural networks for geospatial object detection in VHR satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(1): 23-27.
[32] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. |