[1] JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5830-5840.
[2] GUPTA A, NARAYAN S, JOSEPH K J, et al. OW-DETR: open?world detection transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 9235-9244.
[3] 谢斌红, 张鹏举, 张睿. 结合Graph-FPN与稳健优化的开放世界目标检测[J]. 计算机科学与探索, 2023, 17(12): 2954-2966.
XIE B H, ZHANG P J, ZHANG R. Open world object detection combining Graph-FPN and robust optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2954-2966.
[4] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[5] GUO Z, LIU C, ZHANG X, et al. Beyond bounding-box: Convex-hull feature adaptation for oriented and densely packed object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8792-8801.
[6] 张婷, 张兴忠, 王慧民, 等. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336.
ZHANG T, ZHANG X Z, WANG H M, et al. 3D object detection in substation scene based on graph neural network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336.
[7] 黄磊, 杨媛, 杨成煜, 等. FS-YOLOv5: 轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224.
HUANG L, YANG Y, YANG C Y, et al. FS-YOLOv5: lightweight infrared rode target detection method[J]. Computer Engineering and Applications, 2023, 59(9): 215-224.
[8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[9] ZHU X, SU W, LU L, et al. Deformable transformers for end-to-end object detection[C]//Proceedings of the 9th International Conference on Learning Representations, Virtual Event, 2021: 3-7.
[10] JIANG P T, ZHANG C B, HOU Q, et al. LayerCAM: exploring hierarchical class activation maps for localization[J]. IEEE Transactions on Image Processing, 2021, 30: 5875-5888.
[11] PAPANDREOU G, CHEN L C, MURPHY K P, et al. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1742-1750.
[12] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[13] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[14] HOU Q, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4003-4012.
[15] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[16] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5 模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Hardware detection method of aerial image of UAV transmission line based on attention feature fusion YOLOv5 model[J]. Electrical Measurement and Instrumentation, 2023, 60(3): 145-152.
[17] QIN Z, ZHANG P, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 783-792.
[18] YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11794-11803.
[19] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[20] TORRALBA A. Contextual priming for object detection[J]. International Journal of Computer Vision, 2003, 53: 169-191.
[21] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9423-9433.
[22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[23] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 740-755.
[24] EVERINGHAM M, GOOL V L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[26] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
[27] CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9650-9660.
[28] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[29] SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3400-3409.
[30] PENG C, ZHAO K, LOVELL B C. Faster ILOD: incremental learning for object detectors based on faster RCNN[J]. Pattern Recognition Letters, 2020, 140: 109-115.
[31] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019. |