计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 315-324.DOI: 10.3778/j.issn.1002-8331.2311-0409

• 图形图像处理 • 上一篇    下一篇

多感受野增强的爆破现场安全帽检测算法

王新良,王璐莹   

  1. 河南理工大学 物理与电子信息学院,河南 焦作 454003
  • 出版日期:2025-04-01 发布日期:2025-04-01

Helmet Detection Algorithm Based on Multiple Receptive Field Enhancement in Blasting Scene

WANG Xinliang, WANG Luying   

  1. School of Physics & Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China
  • Online:2025-04-01 Published:2025-04-01

摘要: 针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分支,提升小目标特征信息流通效率,提高了小目标的检测精度;设计基于空洞卷积组与卷积注意力机制的感受野增强模块(receptive field augmentation module,RFAM),捕获了更大范围的感受野和图像特征,改善了遮挡目标漏检率高的问题;根据三分支注意力机制构建特征增强网络(feature enhancement network,FENet),抑制背景噪音对目标区域的干扰,降低了复杂背景下的目标误检率;引入空间到深度卷积(space to depth-conv,SPD-Conv)得到无信息损失的二倍下采样特征图,保留了更多的特征信息,同时减少了模型的参数量。实验结果表明,所提算法的均值平均精度相较于基线算法提升了2.78个百分点,FPS达到了102.67,满足了爆破现场安全帽实时检测的需要。

关键词: 安全帽检测, YOLOX-s算法, 感受野, 空洞卷积, 注意力机制

Abstract: To solve the problems of small area of targets, different degrees of overlapped targets, targets interfered by complex images background, the multiple receptive field enhancement safety helmet detection algorithm based on YOLOX (MRFE-YOLOX) is proposed. A shallow feature fusion branch is added to feature fusion network to improve the small target feature fusion information circulation efficiency and the small targets detection accuracy. Receptive field augmentation module (RFAM) based on dilated convolution groups and convolution attention mechanism are designed to capture wider range receptive field and images feature, which improvs the high miss detection rate of overlapped targets. Feature enhancement network (FENet) based on triplet attention mechanism is constructed to suppress the background noise interference to the target area and make the model focus on the targets feature region and decrease targets false detection rate in complex background. The space to depth-conv (SPD-Conv) module is introduced to obtain the double down-sampling feature maps without information loss, which retains more feature information and reduces the model’s parameters number. The experimental results demonstrate that MRFE-YOLOX’s mean average precision promotes 2.78 percentage points compared with YOLOX and FPS reaches 102.67, which meets the need for real-time safety helmet detection in blasting sites.

Key words: safety helmet detection, YOLOX-s algorithm, receptive field, dilated convolution, attention mechanism