[1] XU X, XUE Z P, ZHAO Y. Research on an algorithm of express parcel sorting based on deeper learning and multi-information recognition[J]. Sensors, 2022, 22(17): 6705.
[2] LIU Y, ZHANG C S, DONG X J. A survey of real-time surface defect inspection methods based on deep learning[J]. Artificial Intelligence Review, 2023, 56(10): 12131-12170.
[3] CHEN J Y, BAI T Y. SAANet: spatial adaptive alignment network for object detection in automatic driving[J]. Image and Vision Computing, 2020, 94: 103873.
[4] LI Y, SUN S Y, ZHANG C S, et al. One-stage disease detection method for maize leaf based on multi-scale feature fusion[J]. Applied Sciences, 2022, 12(16): 7960.
[5] 罗会兰, 袁璞, 童康. 基于深度学习的显著性目标检测方法综述[J]. 电子学报, 2021, 49(7): 1417-1427.
LUO H L, YUAN P, TONG K. Review of the methods for salient object detection based on deep learning[J]. Acta Electronica Sinica, 2021, 49(7): 1417-1427.
[6] LV F, LU F, WU J H, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the British Machine Vision Conference, 2018.
[7] WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low-light enhancement[J]. arXiv:1808.04560, 2018.
[8] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 13-19.
[9] 李昶昱, 葛磊. 基于YOLOv7的轻量级低照度目标检测算法[J]. 激光与光电子学进展, 2024, 61(14): 365-372.
LI C Y, GE L. Lightweight low-light object detection algorithm based on YOLOv7[J]. Laser & Optoelectronics Progress, 2024, 61(14): 365-372.
[10] QIU Y S, LU Y Y, WANG Y T, et al. IDOD-YOLOV7: image-dehazing YOLOV7 for object detection in low-light foggy traffic environments[J]. Sensors, 2023, 23(3): 1347.
[11] LIU W Y, REN G F, YU R S, et al. Image-adaptive YOLO for object detection in adverse weather conditions[J]. arXiv:2112.08088, 2021.
[12] YIN X C, YU Z D, FEI Z T, et al. PE-YOLO: pyramid enhancement network for dark object detection[J]. arXiv:2307.10953, 2023.
[13] PENG D X, DING W, ZHEN T. A novel low light object detection method based on the YOLOv5 fusion feature enhancement[J]. Scientific Reports, 2024, 14(1): 4486.
[14] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[15] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[16] LIU C, WANG K G, LI Q, et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284.
[17] FANG G F, MA X Y, SONG M L, et al. DepGraph: towards any structural pruning[J]. arXiv:2301.12900, 2023.
[18] ZENG S, YANG W Z, JIAO Y Y, et al. SCA-YOLO: a new small object detection model for UAV images[J]. Vision Computer, 2024, 40: 1787-1803.
[19] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024.
[20] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[21] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[22] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[23] 高杨, 曹仰杰, 段鹏松. 神经网络模型轻量化方法综述[J]. 计算机科学, 2024, 51(S1): 23-33.
GAO Y, CAO Y J, DUAN P S. Lightweighting methods for neural network models: a review[J]. Computer Science, 2024, 51(S1): 23-33.
[24] LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.
[25] EVERINGHAM M, VAN G L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[26] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[27] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[28] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 17-24.
[29] WANG C Y, YEH I H, LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[30] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[31] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[32] ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 20-25.
[33] LV W Y, XU S L, ZHAO Y A, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024: 16-22.
[34] 麦锦文, 李浩, 康雁. 基于特征交互结构的弱光目标检测[J]. 计算机工程与应用, 2024, 60(11): 224-232.
MAI J W, LI H, KANG Y. Low-light object detection based on feature interaction structure[J]. Computer Engineering and Applications, 2024, 60(11): 224-232.
[35] 谭豪, 张惊雷, 贾鑫. 基于多级特征提取的低光照目标检测算法[J]. 计算机工程与应用, 2024, 60(24): 235-242.
TAN H, ZHANG J L, JIA X. Low-light target detection algorithm based on multi-level feature extraction[J]. Computer Engineering and Applications, 2024, 60(24): 235-242.
[36] 蒋畅江, 何旭颖, 向杰. LOL-YOLO: 融合多注意力机制的低照度目标检测[J]. 计算机工程与应用, 2024, 60(24): 177-187.
JANG C J, HE X Y, XIANG J. LOL-YOLO: low-light object detection incorporating multiple attention mechanisms[J]. Computer Engineering and Applications, 2024, 60(24): 177-187. |