[1] YOON Y G, LEE S L, CHUNG C W, et al. An effective defect inspection system for polarized film images using image segmentation and template matching techniques[J]. Computers & Industrial Engineering, 2008, 55(3): 567-583.
[2] 黄广俊, 邓元龙. 融合改进LBP和SVM的偏光片外观缺陷检测与分类[J]. 计算机工程与应用, 2020, 56(22): 251-255.
HUANG G J, DENG Y L. Polarizer visual defect detection and classification based on improved LBP and SVM algorithm[J]. Computer Engineering and Applications, 2020, 56(22): 251-255.
[3] LIU R, SUN Z Y, WANG A H, et al. Lightweight efficient network for defect classification of polarizers[J]. Con-currency and Computation: Practice and Experience, 2020, 32(11): e5563.
[4] LIU R, SUN Z Y, WANG A H, et al. Real-time defect detection network for polarizer based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31: 1813-1823.
[5] 夏禹, 肖金球, 翁玉尚. 基于改进Faster-RCNN的偏光片表面缺陷检测[J]. 光学技术, 2021, 47(6): 695-702.
XIA Y, XIAO J Q, WENG Y S. Surface defect detection of polarizer based on improved Faster-RCNN[J]. Optical Technique, 2021, 47(6): 695-702.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[11] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[13] 陈乐, 周永霞, 祖佳贞. 改进YOLOX-S的偏光片表面缺陷检测算法[J]. 计算机工程与应用, 2024, 60(2): 295-303.
CHEN L, ZHOU Y X, ZU J Z. Surface defect detection of polarizer based on improved YOLOX-S algorithm[J]. Computer Engineering and Applications, 2024, 60(2): 295-303.
[14] WANG W, DAI J, CHEN Z, et al. Internimage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14408-14419.
[15] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[17] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[18] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[19] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[20] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: smallsize object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[21] LIANG S H, HUANG W M, XIAO Y N. Enhanced YOLOv7-based construction site environmental detection method[C]//Proceedings of the 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), 2023: 277-283.
[22] TROCKMAN A, KOLTER J Z. Patches are all you need?[J]. arXiv:2201.09792, 2022.
[23] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[24] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[25] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017.
[26] KINGMA D P, BA J. ADAM: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[27] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[28] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[29] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[30] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.
[31] DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578.
[32] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE Inter-National Conference on Computer Vision, 2017: 2980-2988.
[33] FENG C, ZHONG Y, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3490-3499.
[34] ZHU C, HE Y, SAVVIDES M. Feature selective anchorfree module for single-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 840-849.
[35] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolu-tional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[36] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[37] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[38] ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[39] XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022. |