[1] HOU C, QIAO T, QIAO M, et al. Research on audio visual detection method for conveyor belt longitudinal tear[J]. IEEE Access, 2019, 7: 120202-120213.
[2] LI Z, ZHU X, ZHOU J. Intelligent monitoring system of coal conveyor belt based on computer vision technology[C]//Proceedings of the 6th International Conference on Dependable Systems and Their Applications, 2019: 359-364.
[3] MIAO D, WANG Y, YANG L, et al. Foreign object detection method of conveyor belt based on improved nanodet[J]. IEEE Access, 2023, 11: 23046-23052.
[4] GUO X, LIU X, SULOWICZ M, et al. Damage detection for convey or belt surface based on conditional cycle generative adversarial network[J]. Sensors: 2022, 22(9): 3485.
[5] 谭恒, 张红娟, 靳宝全, 等. 基于机器视觉的煤矿带式输送机跑偏检测方法[J]. 煤炭技术, 2021, 40(5):152-156.
TAN H, ZHANG H J, JIN B Q, et al. Method for detecting deviation of coal mine belt conveyor based on machine visiona[J]. Coal Technology, 2021, 40(5): 152-156.
[6] CAO Y, WU D, DUAN Y. A new image edge detection algorithm based on improved canny[J]. Journal of Computational Methods in Sciences and Engineering, 2020, 20(2): 629-642.
[7] ILLINGWORTH J, KITTLER J. A survey of the hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87-116.
[8] LIU Y, MIAO C, LI X, XU G. Research on deviation detection of belt conveyor based on inspection robot and deep learning[J]. Complex, 2021, 2021: 1-15.
[9] YANG Y, MIAO C, LI X, MEI X. On-line conveyor belts inspection based on machine vision[J]. Optik, 2014, 125(19): 5803-5807.
[10] KLIPPEL E, OLIVEIRA R A R, MASLOV D, et al. Embedded edge artificial intelligence for longitudinal rip detection in conveyor belt applied at the industrial mining environment[J]. SN Computer Science, 2022, 3(4): 280.
[11] ZENG C, ZHENG J, LI J. Real-time conveyor belt deviation detection algorithm based on multi-scale feature fusion network[J]. Algorithms, 2019, 12(10): 205.
[12] LI X, SU J, YUE Z, et al. Adaptive multiroi agricultural robot navigation line extraction based on image semantic segmentation[J]. Sensors, 2022, 22(20): 7707.
[13] LIU Y, WANG Y, ZENG C, et al. Edge detection for conveyor belt based on the deep convolutional network[C]//Proceedings of the Chinese Intelligent Systems Conference, 2019: 275-283.
[14] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. arXiv:1505.04597, 2015.
[15] WANG Y, MA X, CHEN Z, et al. Symmetric cross entropy for robust l-earning with noisy labels[J]. arXiv:1908.06112,2019.
[16] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 21st International Conference on Machine Learning, 2001: 282-289.
[17] KR?HENBüHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[J]. arXiv:1210. 5644, 2012.
[18] DENG Q, LI X, NI P, et al. ENet-CRF-lidar: lidar and camera fusion for multi-scale object recognition[J]. IEEE Access, 2019, 7: 174335-174344.
[19] HU J, GU X, WU Y, et al. RoI uncertainty for RGB-thermal image segmentation[C]//Proceedings of the 5th International Conference on Machine Learning and Machine Intelligence, 2022: 132-139.
[20] NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[J]. arXiv:1802.05591, 2018.
[21] DENG F, FENG H, LIANG M, et al. FEANet: feature-enhanced attention network for RGB-thermal real-time semantic segmentation[J]. arXiv:2110.08988, 2021.
[22] GAO X, BAI H, XIONG Y, et al. Robust lane line segmentation based on group feature enhancement[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105568.
[23] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[24] LIN T, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[J]. arXiv:1708.02002, 2017.
[25] TEUTSCH M, TRANTELLE P, BEYERER J. Adaptive real-time image smoothing using local binary patterns and Gaussian filters[C]//Proceedings of the IEEE International Conference on Image Processing, 2013: 1120-1124.
[26] ZHANG J, ZHANG L, TENG Y, ZHANG X, et al. Interactive binary image segmentation with edge preservation[J]. arXiv:1809.03334, 2018.
[27] JASSIM F A, ALTAANI F H. Hybridization of Otsu method and median filter for color image segmentation[J]. arXiv:1305.1052, 2013.
[28] KIO O G, SHARK L. Geometric distortion correction for projections on non-planar and deformable surfaces based on displacement of peripheral image points[J]. International Journal Computer Application Technology, 2022, 68(2): 101-113.
[29] QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection[J]. arXiv:2004.11757, 2020.
[30] JI X, GONG F, YUAN X, et al N. A high-performance framework for personal protective equipment detection on the offshore drilling platform[J]. Complex & Intelligent Systems, 2023, 9: 5637-5652.
[31] PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv:1606.02147, 2016.
[32] CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J]. arXiv:1802.02611, 2018. |