[1] WANG G, LI C, WANG W, et al. Joint embedding of words and labels for text classification[J]. arXiv:1805.04174, 2018.
[2] LIU N, WANG Q, REN J. Label-embedding bi-directional attentive model for multi-label text classification[J]. Neural Processing Letters, 2021, 53: 375-389.
[3] FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1778-1785.
[4] PARIKH D, GRAUMAN K. Relative attributes[C]//Proceedings of the 2011 International Conference on Computer Vision, 2011: 503-510.
[5] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929.
[6] ZHANG H, XIAO L, CHEN W, et al. Multi-task label embedding for text classification[J]. arXiv:1710.07210, 2017.
[7] DU C, CHEN Z, FENG F, et al. Explicit interaction model towards text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 6359-6366.
[8] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 1480-1489.
[9] LAI S, XU L, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
[10] ZHAO W, YE J, YANG M, et al. Investigating capsule networks with dynamic routing for text classification[J]. arXiv:1804.00538, 2018.
[11] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 5753-5763.
[12] QIN J, WU J, XIAO X, et al. Activation modulation and recalibration scheme for weakly supervised semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 2117-2125.
[13] XU L, OUYANG W L, BENNAMOUN M, et al, Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 6964-6973.
[14] ZHANG X, WEI Y, FENG J, et al. Adversarial complementary learning for weakly supervised object localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1325-1334.
[15] XU L, OUYANG W L, BENNAMOUN M, et al. Multi-class token transformer for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4310-4319.
[16] LEE J, KIM E, LEE S, et al. FickleNet: weakly and semi-supervised semantic image segmentation using stochastic inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5267-5276.
[17] KUMAR S K, LEE J Y. Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3524-3533.
[18] CHOE J, LEE S, SHIM H. Attention-based dropout layer for weakly supervised single object localization and semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4256-4271.
[19] WU Z, XIONG Y, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3733-3742.
[20] EVERINGHAM M, ESLAMI S M A, GOOL V L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136.
[21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.
1556, 2014.
[22] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115: 211-252.
[23] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[24] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412. 7062, 2014.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[26] RU L, ZHAN Y, YU B, et al. Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 16846-16855.
[27] CHEN Z, WANG T, WU X, et al. Class re-activation maps for weakly-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 969-978.
[28] PAN J, ZHU P, ZHANG K, et al. Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation[J]. International Journal of Computer Vision, 2022, 130(5): 1181-1195.
[29] KWEON H, YOON S H, KIM H, et al. Unlocking the potential of ordinary classifier: class-specific adversarial erasing framework for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 6994-7003.
[30] ZHANG F, GU C, ZHANG C, et al. Complementary patch for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7242-7251.
[31] SUN K, SHI H, ZHANG Z, et al. ECS-Net: improving weakly supervised semantic segmentation by using connections between class activation maps[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7283-7292.
[32] WANG Y, ZHANG J, KAN M, et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12275-12284.
[33] ZHANG B, XIAO J, WEI Y, et al. Reliability does matter: an end-to-end weakly supervised semantic segmentation approach[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12765-12772.
[34] CHEN L, WU W, FU C, et al. Weakly supervised semantic segmentation with boundary exploration[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 347-362.
[35] SU Y, SUN R, LIN G, et al. Context decoupling augmentation for weakly supervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7004-7014. |