[1] KOMNINOS N, PHILIPPOU E, PITSILLIDES A. Survey in smart grid and smart home security: issues, challenges and countermeasures[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 1933-1954.
[2] LIU Y, CHENG C, GU T, et al. A lightweight authenticated communication scheme for smart grid[J]. IEEE Sensors Journal, 2015, 16(3): 836-842.
[3] TSAI J L, LO N W. Secure anonymous key distribution scheme for smart grid[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 906-914.
[4] YAN L, CHANG Y, ZHANG S. A lightweight authentication and key agreement scheme for smart grid[J]. International Journal of Distributed Sensor Networks, 2017, 13(2): 34791657.
[5] ODELU V, DAS A K , WAZID M, et al. Provably secure authenticated key agreement scheme for smart grid[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1900-1910.
[6] KUMAR P, GURTOV A, SAIN M, et al. Lightweight authentication and key agreement for smart metering in smart energy networks[J]. IEEE Transactions on Smart Grid, 2018, 10(4): 4349-4359.
[7] GOPE P, SIKDAR B. Privacy-aware authenticated key agreement scheme for secure smart grid communication[J]. IEEE Transactions on Smart Grid, 2018, 10(4): 3953-3962.
[8] 许盛伟, 任雄鹏, 陈诚, 等. 可证安全的无证书两方认证密钥协商协议[J]. 密码学报, 2020, 7(6): 886-898.
XU S W, REN X P, CHEN C, et al. Provably secure certificateless two-party authenticated key agreement protocol[J]. Journal of Cryptologic Research, 2020, 7(6): 886-898.
[9] GUPTA D S, ISLAM S K H, OBAIDAT M S, et al. A provably secure and lightweight identity-based two-party authenticated key agreement protocol for IIoT environments[J]. IEEE Systems Journal, 2020, 15(2): 1732-1741.
[10] QI M, CHEN J. Two-pass privacy preserving authenticated key agreement scheme for smart grid[J]. IEEE Systems Journal, 2020, 15(3): 3201-3207.
[11] KHAN A A, KUMAR V, AHMAD M, et al. LAKAF: lightweight authentication and key agreement framework for smart grid network[J]. Journal of Systems Architecture, 2021, 116: 102053.
[12] DENG L, GAO R. Certificateless two-party authenticated key agreement scheme for smart grid[J]. Information Sciences, 2021, 543: 143-156.
[13] SAFKHANI M, KUMARI S, SHOJAFAR M, et al. An authentication and key agreement scheme for smart grid[J]. Peer-to-Peer Networking and Applications, 2022, 15(3): 1595-1616.
[14] KHAN A A, KUMAR V, AHMAD M, et al. PALK: password-based anonymous lightweight key agreement framework for smart grid[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106121.
[15] TOMAR A, TRIPATHI S. Blockchain-assisted authentication and key agreement scheme for fog-based smart grid[J]. Cluster Computing, 2022, 25(1): 1-18.
[16] YU S J, PARK K S. ISG-SLAS: secure and lightweight authentication and key agreement scheme for industrial smart grid using fuzzy extractor[J]. Journal of Systems Architecture, 2022, 131: 102698.
[17] BAGHESTANI S H, MOAZAMI F, TAHAVORI M. Lightweight authenticated key agreement for smart metering in smart grid[J]. IEEE Systems Journal, 2022, 16(3): 4983-4991.
[18] TAQI S A M, JALILI S. LSPA-SGs: a lightweight and secure protocol for authentication and key agreement based elliptic curve cryptography in smart grids[J]. Energy Reports, 2022, 8: 153-164.
[19] HU S, CHEN Y, ZHENG Y, et al. Provably secure ECC-based authentication and key agreement scheme for advanced metering infrastructure in the smart grid[J]. IEEE Transactions on Industrial Informatics, 2022, 19(4): 5985-5994.
[20] 喇元, 赵继光, 张伟. 基于SM9门限签名的电力终端安全认证协议[J]. 电力科学与技术学报, 2022, 37(4): 183-188.
LA Y, ZHAO J G, ZHANG W. Security authentication scheme for power terminals based on the SM9 threshold signature[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 183-188.
[21] 丁志帆, 胡洪波, 杨庆余, 等. 安全增强的智能电网轻量级匿名认证协议[J]. 计算机应用研究, 2022, 39(10): 3124-3129.
DING Z F, HU H B, YANG Q Y, et al. Security enhanced lightweight anonymous authentication scheme for smart grid[J]. Application Research of Computers, 2022, 39(10): 3124-3129.
[22] 程庆丰,马玉千. 两个认证密钥协商协议的前向安全性分析[J]. 电子与信息学报, 2022, 44(12): 4294-4303.
CHENG Q F, MA Y Q. Cryptoanalysis on the forward security of two authenticated key protocols[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4294-4303.
[23] AKRAM M A, GHAFFAR Z, MAHMOOD K, et al. An anonymous authenticated key-agreement scheme for multi-server infrastructure[J]. Human-Centric Computing and Information Sciences, 2020, 10(1): 1-18.
[24] SURESHKUMAR V, ANANDHI S, AMIN R, et al. Design of robust mutual authentication and key establishment security protocol for cloud-enabled smart grid communication[J]. IEEE Systems Journal, 2020, 15(3): 3565-3572.
[25] WANG W, HUANG H, XIAO F, et al. An adaptive secure handover authenticated key agreement for multi-server architecture communication applications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9830-9839.
[26] 宋庆, 马米米, 邓淼磊, 等. 轻量级的两方认证密钥协商协议[J]. 计算机工程与应用, 2024, 60(14): 283-293.
SONG Q, MA M M, DENG M L, et al. Lightweight two-party authentication key agreement protocol[J]. Computer Engineering and Applications, 2024, 60(14): 283-293. |