[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[3] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 10778-10787.
[4] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37
[6] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[7] REN S, HE K, GIRSHICK R, et al. Faster RCNN: towards realtime object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems, 2015: 91-99.
[8] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[9] 辛世澳, 葛海波, 袁昊, 等. 改进YOLOv7的轻量化水下目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 88-99.
XIN S A, GE H B, YUAN H, et al. Improved lightweight underwater target detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(3): 88-99.
[10] 梁秀满, 李然, 于海峰, 等. 改进YOLOv7的水下目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 89-99.
LIANG X M, LI R, YU H F, et al. Improved underwater object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(6): 89-99.
[11] 常戬, 陈洪福, 王冰冰. Transformer与CNN并行引导的水下图像增强[J]. 计算机工程与应用, 2024, 60(4): 280-288.
CHANG J, CHEN H F, WANG B B. Underwater image enhancement based on parallel guidance of Transformer and CNN[J]. Computer Engineering and Applications, 2024, 60(4): 280-288.
[12] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[13] CAI Y, LUAN T, GAO H, et al. YOLOv4-5D: an effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[14] WU W, LIU H, LI L, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image[J]. PloS One, 2021, 16(10): e0259283.
[15] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012.
[16] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[17] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[18] SHEN Z, LIU Z, LI J, et al. Object detection from scratch with deep supervision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(2): 398-412.
[19] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatial attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[20] LIN G, SHEN W. Research on convolutional neural network based on improved ReLU piecewise activation function[J]. Procedia Computer Science, 2018, 131: 977-984.
[21] TARG S, ALMEIDA D, LYMAN K. Resnet in resnet: generalizing residual architectures[J]. arXiv:1603.08029, 2016.
[22] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[J]. arXiv:2303. 03667, 2023.
[23] DAI L, LIU H, SONG P, et al. A gated cross-domain collaborative network for underwater object detection[J]. Pattern Recognition, 2024, 149: 110222.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[25] LU W, CHEN S B, TANG J, et al. A robust feature downsampling module for remote-sensing visual tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[26] HU S, GAO F, ZHOU X, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5504005.
[27] LIU C, LI H, WANG S, et al. A dataset and benchmark of underwater object detection for robot picking[C]//Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 2021: 1-6.
[28] GE Z, LIU S, WANG F, et al. YOLOx: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[29] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[30] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[31] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[32] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[33] WEN J, CUI J, ZHAO B, et al. EnYOLO: a real-time framework for domain-adaptive underwater object detection with image enhancement[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024: 12613-12619. |