[1] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440- 1448.
[2] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision(ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[5] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[6] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[7] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[9] 刘源, 张荣芬, 刘宇红, 等. 基于CE-YOLOX的导盲系统障碍物检测方法[J]. 液晶与显示, 2023, 38(9):1281-1292.
LIU Y, ZHANG R F, LIU Y H, et al. Obstacle detection method for guide system based on CE-YOLOX[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(9): 1281-1292.
[10] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[11] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[12] 刘辉, 刘鑫满, 刘大东. 面向复杂道路目标检测的YOLOv5算法优化研究[J]. 计算机工程与应用, 2023, 59(18): 207-217.
LIU H, LIU X M, LIU D D. Research on optimization of YOLOv5 detection algorithm for object in complex road[J]. Computer Engineering and Applications, 2023, 59(18): 207-217.
[13] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPs for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[14] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[15] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[16] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[17] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
[18] SHI D. TransNeXt: robust foveal visual perception for vision Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 17773-17783.
[19] DING X, ZHANG Y, GE Y, et al. UniRepLKNet: a universal perception large-kernel ConvNet for audio video point cloud time-series and image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5513-5524.
[20] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[21] LIU C, WANG K, LI Q, et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284.
[22] LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[J]. arXiv:2010.07611, 2020.
[23] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning, 2015: 448-456.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[25] SHAZEER N. Glu variants improve transformer[J]. arXiv:2002.05202, 2020.
[26] ZHANG J, CHEN Z, YAN G, et al. Faster and lightweight: an improved YOLOv5 object detector for remote sensing images[J]. Remote Sensing, 2023, 15(20): 4974.
[27] XIA H, YAO C, TAN Y, et al. A dataset for the visually impaired walk on the road[J]. Displays, 2023, 79: 102486.
[28] TANG W, LIU D, ZHAO X, et al. A dataset for the recognition of obstacles on blind sidewalk[J]. Universal Access in the Information Society, 2023, 22(1): 69-82.
[29] ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[30] LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420- 14430.
[31] MA X, DAI X, BAI Y, et al. Rewrite the stars[J]. arXiv:2403.19967, 2024.
[32] XIA Z, PAN X, SONG S, et al. Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4794-4803.
[33] ZHAO Y, LV W, XU S, et al. Detrs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[34] HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolu-tional attention for medical image segmentation[J]. arXiv:2306.05196, 2023.
[35] HU M, FENG J, HUA J, et al. Online convolutional re-parameterization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 568-577.
[36] HUANG L, LI W, SHEN L, et al. YOLOCS: object detection based on dense channel compression for feature spatial solidification[J]. arXiv:2305.04170, 2023.
[37] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[38] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[39] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312.17663, 2023.
[40] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[41] FANG G, MA X, SONG M, et al. Depgraph: towards any structural pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16091-16101.
[42] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[43] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[44] ZHANG J, LV Y, TAO J, et al. A robust real-time anchor-free traffic sign detector with one-level feature[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1437-1451. |