计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 242-254.DOI: 10.3778/j.issn.1002-8331.2406-0387

• 图形图像处理 • 上一篇    下一篇

面向户外导盲场景的道路目标检测算法

李明,何志奇,党青霞,朱胜利   

  1. 1.武汉纺织大学 湖北省服装信息化工程技术研究中心,武汉 430200
    2.武汉纺织大学 湖北省数字化纺织装备重点实验室,武汉 430200
  • 出版日期:2025-05-01 发布日期:2025-04-30

Road Object Detection Algorithm for Outdoor Blind Navigation Scenariosc

LI Ming, HE Zhiqi, DANG Qingxia, ZHU Shengli   

  1. 1.Engineering Research Center of Hubei Province for Clothing Information, Wuhan Textile University, Wuhan 430200, China
    2.Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 针对户外导盲场景中道路目标检测存在的复杂背景干扰及关键语义信息需求,当前目标检测算法在道路目标检测中表现出较低的准确性以及容易出现漏检的问题,为此提出一种基于YOLOv8n的道路目标检测算法OD-YOLO。基于FasterNet和SPPF构建主干网络;使用FasterNet以增强特征提取能力,在SPPF模块中引入可分离大核注意力机制(large separable kernel attention,LSKA)以提高算法对道路目标整体的感知能力。提出一种新的C2f模块GAC2f,在减小模型计算量的同时提高其特征捕获能力,同时通过使用多样分支模块(diverse branch block,DBB)中结构重参数化思想优化GAC2f,在不损失模型性能的前提下,融合多种特征信息以显著提高模型精度,另一方面使用卷积门控线性单元(convolutional gated linear unit,Convolutional GLU)改进LarK中的大核卷积以优化GAC2f,使模型能够捕获更多上下文信息。提出一种轻量级非对称检测头PADH,在提高模型性能的同时减少参数量,并使用PIoUv2改进原有的损失函数,通过基于层自适应稀疏度的量级剪枝(layer-adaptive sparsity for the magnitude-based pruning,LAMP)操作进一步优化算法模型。实验结果表明,在公共人行道路目标数据集WOTR上,OD-YOLO与YOLOv8n相比,经过剪枝后模型参数量同为3×106,但mAP@0.5、mAP@0.5:0.95分别提升3.4和4.1个百分点,证明算法OD-YOLO在面向户外导盲场景的道路目标检测中可以达到预期的效果。

关键词: 户外导盲, 目标检测, 轻量化, 通道剪枝, YOLOv8n

Abstract: To address the challenges of complex background interference and the need for key semantic information in road object detection for outdoor blind navigation, as well as the low accuracy and frequent missed detections of current models, a road object detection algorithm named OD-YOLO is proposed, based on YOLOv8n. The backbone network utilizes FasterNet to enhance feature extraction. In the SPPF module, a large separable kernel attention (LSKA) mechanism is introduced to improve the perception of road object. The GAC2f module is designed to reduce computational load while enhancing feature capture capability. By optimizing GAC2f with structural reparameterization from the diverse branch block (DBB), multiple features are fused without sacrificing performance, significantly improving accuracy. Additionally, the LarK large kernel convolution, optimized with the convolutional gated linear unit (Convolutional GLU), captures more contextual information. The lightweight asymmetric detection head, PADH, enhances performance while reducing the number of parameters. The loss function is refined using PIoUv2, and further model optimization is achieved through layer-adaptive sparsity for magnitude-based pruning (LAMP). Experimental results on the WOTR public pedestrian road object dataset demonstrate that OD-YOLO, compared to YOLOv8n, reduces parameters to 3×106 and improves mAP@0.5 and mAP@0.5:0.95 by 3.4 and 4.1 percentage points, respectively. It proves that the algorithm OD-YOLO can achieve the expected effect in the road object detection of outdoor blind navigation scenarios.

Key words: outdoor blind navigation, object detection, lightweight, channel pruning, YOLOv8n