
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 61-79.DOI: 10.3778/j.issn.1002-8331.2409-0040
罗敏,曹路,利建铖,何锡权,刘广武,温晋瑜,黄秀清
出版日期:2025-05-01
发布日期:2025-04-30
LUO Min, CAO Lu, LI Jiancheng, HE Xiquan, LIU Guangwu, WEN Jinyu, HUANG Xiuqing
Online:2025-05-01
Published:2025-04-30
摘要: 精准的视盘与视杯分割对于青光眼的检测至关重要。近年来,深度学习技术在视盘与视杯分割领域取得了优异的成果,显著提升了分割精度。从深度学习技术在视盘与视杯分割的研究现状出发,归纳了视盘与视杯分割的常用数据集,包括其内容、用途和获取路径;概述了评估分割性能与模型性能的关键指标。分析了视盘与视杯分割中四类主要研究方法:基于多尺度的方法、注意力机制的融合、对抗学习机制及集成学习方法。对这些方法进行了优缺点分析,总结了它们在常用公开数据集上的性能指标。最后,探讨了视盘与视杯分割在青光眼检测中所面临的挑战,并展望了未来的研究方向,旨在为该领域的进一步研究提供参考。
罗敏, 曹路, 利建铖, 何锡权, 刘广武, 温晋瑜, 黄秀清. 青光眼检测视盘与视杯分割在深度学习中的研究综述[J]. 计算机工程与应用, 2025, 61(9): 61-79.
LUO Min, CAO Lu, LI Jiancheng, HE Xiquan, LIU Guangwu, WEN Jinyu, HUANG Xiuqing. Review of Research on Optic Disc and Optic Cup Segmentation in Deep Learning for Glaucoma Detection[J]. Computer Engineering and Applications, 2025, 61(9): 61-79.
| [1] MENG Y, CHEN X, ZHANG H, et al. Shape-aware weakly/semi-supervised optic disc and cup segmentation with regional/marginal consistency[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, September 18-22, 2022. Cham: Springer Nature Switzerland, 2022: 524-534. [2] GUO X, LI J, LIN Q, et al. Joint optic disc and cup segmentation using feature fusion and attention[J]. Computers in Biology and Medicine, 2022, 150: 106094. [3] DOS SANTOS FERREIRA M V, DE CARVALHO FILHO A O, DE SOUSA A D, et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma[J]. Expert Systems with Applications, 2018, 110: 250-263. [4] THAM Y C, LI X, WONG T Y, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. [5] MOHAMED N A, ZULKIFLEY M A, ZAKI W M D W, et al. An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach[J]. Biomedical Signal Processing and Control, 2019, 53: 101454. [6] THAKUR N, JUNEJA M. Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma[J]. Current Medical Imaging, 2017, 13(1): 99-105. [7] REHMAN Z U, NAQVI S S, KHAN T M, et al. Multi-parametric optic disc segmentation using superpixel based feature classification[J]. Expert Systems with Applications, 2019, 120: 461-473. [8] MURSCH-EDLMAYR A S, NG W S, DINIZ-FILHO A, et al. Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: translation to clinical practice[J]. Translational Vision Science & Technology, 2020, 9(2): 55. [9] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. [10] FUMERO F, ALAYóN S, SANCHEZ J L, et al. RIM-ONE: an open retinal image database for optic nerve evaluation[C]//Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems(CBMS), 2011: 1-6. [11] ORLANDO J I, FU H, BREDA J B, et al. Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs[J]. Medical Image Analysis, 2020, 59: 101570. [12] SIVASWAMY J, KRISHNADAS S R, JOSHI G D, et al. Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation[C]//Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014: 53-56. [13] PORWAL P, PACHADE S, KAMBLE R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25. [14] ZHANG Z, YIN F S, LIU J, et al. ORIGA: an online retinal fundus image database for glaucoma analysis and research[C]//Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: 3065-3068. [15] BUDAI A, BOCK R, MAIER A, et al. Robust vessel segmentation in fundus images[J]. International Journal of Biomedical Imaging, 2013(6): 154860-154870. [16] STAAL J, ABRáMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. [17] BATISTA F J F, DIAZ-ALEMAN T, SIGUT J, et al. RIM-ONE DL: a unified retinal image database for assessing glaucoma using deep learning[J]. Image Analysis and Stereology, 2020, 39(3): 161-167. [18] ALMAZROA A, ALODHAYB S, OSMAN E, et al. Retinal fundus images for glaucoma analysis: the RIGA dataset[C]//Proceedings of the SPIE Medical Imaging Conference on Imaging Informatics for Healthcare, Research, and Applications, 2018: 55-62. [19] DIAZ-PINTO A, MORALES S, NARANJO V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. Biomedical Engineering Online, 2019, 18: 1-19. [20] LI L, XU M, WANG X, et al. Attention based glaucoma detection: a large-scale database and CNN model[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10571-10580. [21] CARMONA E J, RINCóN M, GARCíA-FEIJOó J, et al. Identification of the optic nerve head with genetic algorithms[J]. Artificial Intelligence in Medicine, 2008, 43(3): 243-259. [22] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-210. [23] HOLM S, RUSSELL G, NOURRIT V, et al. DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients[J]. Journal of Medical Imaging, 2017, 4(1): 014503. [24] WU J, FANG H, LI F, et al. Gamma challenge: glaucoma grading from multi-modality images[J]. Medical Image Analysis, 2023, 90: 102938. [25] 王彩云,玄祖兴,周建平,等. 对抗学习下的眼底图像视盘视杯分割算法[J]. 计算机应用与软件, 2024,41(2): 229-237. WANG C Y, XUAN Z X, ZHOU J P, et al. Optic disc and cup segmentation algorithm for fundus images under adversarial learning[J]. Computer Applications and Software, 2024, 41(2): 229-237. [26] ISLAM M T, MASHFU S T, FAISAL A, et al. Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation[J]. IEEE Access, 2021, 10: 2828-2841. [27] 王燕,南佩奇. MFFNet:多级特征融合图像语义分割网络[J]. 计算机科学与探索, 2024, 18(3): 707-717. WANG Y, NAN P Q. MFFNet: image semantic segmentation network of multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717. [28] KIM J, TRAN L, PETO T, et al. Identifying those at risk of glaucoma: a deep learning approach for optic disc and cup segmentation and their boundary analysis[J]. Diagnostics, 2022, 12(5): 1063. [29] XIAO Y, ZHAO J, YU Y, et al. SimpleCNN-UNet: an optic disc image segmentation network based on efficient small-kernel convolutions[J]. Expert Systems with Applications, 2024, 256: 124935. [30] BALI A, MANSOTRA V. Glaucoma diagnosis using hybrid neural encoder decoder based unet hybrid inception[J]. Mansoura Engineering Journal, 2024, 49(4): 1-11. [31] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [32] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [33] 梅华威,尚虹霖,苏攀,等. 融合残差上下文编码和路径增强的视杯视盘分割[J]. 中国图象图形学报,2024,29(3):637-654. MEI H W, SHANG H L, SU P, et al. Optic disc and cup segmentation with combined residual context encoding and path augmentation[J]. Journal of Image and Graphics, 2024, 29(3):637-654. [34] WANG J, LI X, CHENG Y. Towards an extended efficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image[J]. Biomedical Signal Processing and Control, 2023, 85: 104906. [35] NAWAZ M, NAZIR T, JAVED A, et al. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization[J]. Sensors, 2022, 22(2): 434. [36] VASWANI A. Attention is all you need[J]. Neural Information Processing Systems, 2017, 30: 1-11. [37] BAZI Y, AL RAHHAL M M, ELGIBREEN H, et al. Vision transformers for segmentation of disc and cup in retinal fundus images[J]. Biomedical Signal Processing and Control, 2024, 91: 105915. [38] WANG J, MAO Y A, MA X, et al. ODFormer: semantic fundus image segmentation using transformer for optic nerve head detection[J]. Information Fusion, 2024,112: 102533. [39] HUA K, FANG X, TANG Z, et al. DCAM-NET: a novel domain generalization optic cup and optic disc segmentation pipeline with multi-region and multi-scale convolution attention mechanism[J]. Computers in Biology and Medicine, 2023, 163: 107076. [40] ZHOU W, JI J, CUI W, et al. Unsupervised domain adaptation fundus image segmentation via multi-scale adaptive adversarial learning[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 5792-5803. [41] ZHOU Z, ZHENG Y, ZHOU X, et al. Self-supervised pre-training for joint optic disc and cup segmentation via attention-aware network[J]. BMC Ophthalmology, 2024, 24(1): 98. [42] DOSOVITSKY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [43] TANG S, SONG C, WANG D, et al. W-Net: a boundary-aware cascade network for robust and accurate optic disc segmentation[J]. iScience, 2024, 27(1):108247. [44] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich, Germany, October 5-9, 2015. Cham: Springer International Publishing , 2015: 234-241. [45] SUN G, ZHANG Z, ZHANG J, et al. Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening[J]. Neural Computing and Applications, 2023, 35(22):16129-16142. [46] BHATTACHARYA R, HUSSAIN R, CHATTERJEE A, et al. PY-Net: rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images[J]. Biomedical Signal Processing and Control, 2023, 85: 104895. [47] YI Y, JIANG Y, ZHOU B, et al. C2FTFNet: coarse-to-fine transformer network for joint optic disc and cup segmentation[J]. Computers in Biology and Medicine, 2023, 164: 107215. [48] SHYAMALEE T, MEEDENIYA D. Glaucoma detection with retinal fundus images using segmentation and classification[J]. Machine Intelligence Research, 2022, 19(6): 563-580. [49] ZHANG X, LIN Y, LI L, et al. MA‐ResUNet: multi‐attention optic cup and optic disc segmentation based on improved U‐Net[J]. IET Image Processing, 2024, 18(12): 3128-3142. [50] JIANG Y, MA Z, WU C, et al. RSAP-Net: joint optic disc and cup segmentation with a residual spatial attention path module and MSRCR-PT pre-processing algorithm[J]. BMC Bioinformatics, 2022, 23(1): 523. [51] WANG R, LEI T, CUI R, et al. Medical image segmentation using deep learning: a survey[J]. IET Image Processing, 2022, 16(5): 1243-1267. [52] MALLICK S, PAUL J, SIL J. Response fusion attention U-ConvNext for accurate segmentation of optic disc and optic cup[J]. Neurocomputing, 2023, 559: 126798. [53] ALAM A U I, ISLAM S P, HASAN S M M, et al. Optic disc and cup segmentation via enhanced U-Net with residual and attention mechanisms[C]//Proceedings of the 2024 6th International Conference on Electrical Engineering and Information & Communication Technology(ICEEICT), 2024: 329-334. [54] DEWA J K, RACHMAWATI E, KOSALA G. Investigating self-attention in Swin-Unet model for disc and cup segmentation[C]//Proceedings of the 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2023: 401-406. [55] PENG H, WANG G. Cup and disc segmentation algorithm based on improved Swin-UNet model[C]//Proceedings of the 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference(IAEAC), 2024: 485-488. [56] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [57] LIU Y, WU J, ZHU Y, et al. Combined optic disc and optic cup segmentation network based on adversarial learning[J]. IEEE Access, 2024, 12:104898-104908. [58] GOBINATH C, GOPINATH M P. Deep convolutional neural network for glaucoma detection based on image classification[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 1957-1971. [59] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680. [60] ISSAC A, SARATHI M P, DUTTA M K. An adaptive threshold based image processing technique for improved glaucoma detection and classification[J]. Computer Methods and Programs in Biomedicine, 2015, 122(2): 229-244. [61] 马晓月,陈媛媛. 基于对抗学习和引导机制的视盘和视杯联合分割[J]. 计算机工程, 2024, 50(12): 59-69. MA X Y, CHEN Y Y. Joint optic disc and optic cup segmentation based on adversarial learning and guidance mechanism[J]. Computer Engineering, 2024, 50(12): 59-69. [62] MEENAKSHI DEVI P, GNANAVEL S, NARAYANA K E, et al. Novel methods for diagnosing glaucoma: segmenting optic discs and cups using ensemble learning algorithms and CDR ratio analysis[J]. IETE Journal of Research, 2024, 70(8): 6828-6847. [63] GAO X R, WU F, YUHAS P T, et al. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection[J]. Scientific Reports, 2024, 14(1): 4494. [64] KIM J, TRAN L, PETO T, et al. Deep learning and ensemble method for optic disc and cup segmentation[C]//Proceedings of the 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2022: 1-8. [65] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28: 41-75. [66] PASCAL L, PERDOMO O J, BOST X, et al. Multi-task deep learning for glaucoma detection from color fundus images[J]. Scientific Reports, 2022, 12(1): 12361. [67] LENKA S, MAYALURI Z L, PANDA G, et al. Glaucoma detection from retinal fundus images using graph convolution based multi-task model[J]. Authorea Preprints, 2023,11:100931. [68] LU S, ZHAO H, LIU H, et al. PKRT-Net: prior knowledge-based relation transformer network for optic cup and disc segmentation[J]. Neurocomputing, 2023, 538: 126183. [69] XIONG H, LIU S, SHARAN R V, et al. Weak label based Bayesian U-Net for optic disc segmentation in fundus images[J]. Artificial Intelligence in Medicine, 2022, 126: 102261. [70] HERVELLA á S, ROUCO J, NOVO J, et al. End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images[J]. Applied Soft Computing, 2022, 116: 108347. [71] LIU B, PAN D, SHUAI Z, et al. ECSD-Net: a joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation[J]. Computer Methods and Programs in Biomedicine, 2022, 213: 106530. [72] CHEN Z, PAN Y, XIA Y. Reconstruction-driven dynamic refinement based unsupervised domain adaptation for joint optic disc and cup segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(7): 3537-3548. [73] LIU P, TRAN C T, KONG B, et al. CADA: multi-scale collaborative adversarial domain adaptation for unsupervised optic disc and cup segmentation[J]. Neurocomputing, 2022, 469: 209-220. [74] ZHAO A, SU H, SHE C, et al. Joint optic disc and cup segmentation based on elliptical-like morphological feature and spatial geometry constraint[J]. Computers in Biology and Medicine, 2023, 158: 106796. [75] ZHANG F, LI S, DENG J. Unsupervised domain adaptation with shape constraint and triple attention for joint optic disc and cup segmentation[J]. Sensors, 2022, 22(22): 8748. [76] HE Y, KONG J, LIU D, et al. Self-ensembling with mask-boundary domain adaptation for optic disc and cup segmentation[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107635. [77] LI Z, ZHAO C, HAN Z, et al. TUNet and domain adaptation based learning for joint optic disc and cup segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107209. [78] GONG R, LI W, CHEN Y, et al. Dlow: domain flow for adaptation and generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2477-2486. [79] CHEN Z, PAN Y, YE Y, et al. TriLA: triple-level alignment based unsupervised domain adaptation for joint segmentation of optic disc and optic cup[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(9): 5497-5508. [80] HUANG L, ZHANG N, YI Y, et al. SAMCF: adaptive global style alignment and multi-color spaces fusion for joint optic cup and disc segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108639. [81] HE Y, KONG J, LI J, et al. Entropy and distance-guided super self-ensembling for optic disc and cup segmentation[J]. Biomedical Optics Express, 2024, 15(6): 3975-3992. [82] MENG Y, ZHANG H, ZHAO Y, et al. Dual consistency enabled weakly and semi-supervised optic disc and cup segmentation with dual adaptive graph convolutional networks[J]. IEEE Transactions on Medical Imaging, 2022, 42(2): 416-429. [83] HERVELLA á S, RAMOS L, ROUCO J, et al. Multi-modal self-supervised pre-training for joint optic disc and cup segmentation in eye fundus images[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), 2020: 961-965. [84] SUDHAN M B, SINTHUJA M, PRAVISHT RAJA S, et al. Segmentation and classification of glaucoma using U‐Net with deep learning model[J]. Journal of Healthcare Engineering, 2022 (1): 1601354. [85] LATIF J, TU S, XIAO C, et al. ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images[J]. SN Applied Sciences, 2022, 4(4): 98. [86] SANGHAVI J, KURHEKAR M. An efficient framework for optic disk segmentation and classification of glaucoma on fundus images[J]. Biomedical Signal Processing and Control, 2024, 89: 105770. [87] WONG D W K, LIU J, LIM J H, et al. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images[C]//Proceedings of the Medical Imaging 2009: Computer-Aided Diagnosis, Lake Buena Vista (Orlando Area), Florida, United States, 2009: 459-466. [88] YANG K, JIANG W, SHI Y, et al. Cup-disk ratio segmentation joint with key retinal vascular information under diagnostic and screening scenarios[C]//Proceedings of the Computer Graphics International Conference. Cham: Springer Nature Switzerland, 2023: 313-326. [89] LI F, XIANG W, ZHANG L, et al. Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network[J]. Eye,2022, 37(6): 1080-1087. [90] ELMANNAI H, ALHUSSAN A A, AYADI M, et al. An improved deep learning framework for automated optic disc localization and glaucoma detection[J]. Computer Modeling in Engineering & Sciences, 2024, 140(2): 1429-1457. [91] 徐光宪,冯春,马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8):1776-1792. [92] ZHOU W, JI J, JIANG Y, et al. EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation[J]. Frontiers in Neuroscience, 2023, 17: 1139181. [93] VEENA H N, MURUGANANDHAM A, KUMARAN T S. A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(8): 6187-6198. [94] 蓝子俊,谢珺,郭燕,等. 基于线性化注意力和双重注意力的视盘分割模型[J]. 生物医学工程学杂志, 2023, 40(5): 920-927. LAN Z J, XIE J, GUO Y, et al. Optic cup and disc segmentation model based on linear attention and dual attention[J]. Journal of Biomedical Engineering, 2023, 40(5):920-927. [95] LI W, HUANG W. Joint optic disc and cup segmentation with parallel cooperative diffusion model[C]//Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2023: 2017-2020. [96] YAN S, PAN X, WANG Y. MRSNet: joint consistent optic disc and cup segmentation based on large kernel residual convolutional attention and self-attention[J]. Digital Signal Processing, 2024, 145: 104308. [97] VIRBUKAIT? S, BERNOTAVI?IEN? J, IMBRA?IEN? D. Glaucoma identification using convolutional neural networks ensemble for optic disc and cup segmentation[J]. IEEE Access, 2024,12: 82720-82729. [98] LUO X, WANG G, LIAO W, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517. [99] WANG H, WANG Z, WANG X, et al. AnatSwin: an anatomical structure-aware transformer network for cardiac MRI segmentation utilizing label images[J]. Neurocomputing, 2024, 577: 127379. [100] DING F, YANG G, WU J, et al. High-order attention networks for medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2020: 253-262. [101] HUANG X, KONG X, SHEN Z, et al. GRAPE: a multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management[J]. Scientific Data, 2023, 10(1): 520. [102] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [103] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1135-1144. [104] SCOTT M, SU-IN L. A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems, 2017: 4765-4774. |
| [1] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [2] | 罗毅恒, 张俊华, 张剑青. 交换标签部分和交叉监督的半监督医学图像分割[J]. 计算机工程与应用, 2025, 61(4): 253-261. |
| [3] | 郭培岩, 范九伦, 刘恒. 改进RHGSO-FC算法的RGB-D图像GMM聚类分割[J]. 计算机工程与应用, 2025, 61(2): 234-246. |
| [4] | 李飞翔, 降爱莲. MSMVT:多尺度和多视图Transformer半监督医学图像分割框架[J]. 计算机工程与应用, 2025, 61(2): 273-282. |
| [5] | 陈曦, 刘建平, 周国民, 王健, 张越, 邢嘉璐. 半监督学习方法在作物图像处理中的应用进展[J]. 计算机工程与应用, 2025, 61(12): 45-68. |
| [6] | 邓希泉, 陈刚. ConvUCaps:基于卷积胶囊网络的医学图像分割模型[J]. 计算机工程与应用, 2024, 60(8): 258-266. |
| [7] | 呼伟, 徐巧枝, 葛湘巍, 于磊. 医学图像分割的无监督域适应研究综述[J]. 计算机工程与应用, 2024, 60(6): 10-26. |
| [8] | 吕扬, 吴静静, 庄祉珊, 安聪颖. 边界感知SegFormer网络的阵列目标图像分割方法[J]. 计算机工程与应用, 2024, 60(24): 188-199. |
| [9] | 牛亮, 张孟璐, 陈炳华, 姜舒, 陆璐琦, 徐晓, 牛强. 面向类别不平衡的胎儿心脏超声图像分割算法[J]. 计算机工程与应用, 2024, 60(21): 236-243. |
| [10] | 魏哲亮, 李岳阳, 罗海驰. 多尺度池化和双向特征融合的场景文本检测[J]. 计算机工程与应用, 2024, 60(2): 154-161. |
| [11] | 张震, 彭景昊, 田鸿朋. 考虑数据分布损失的图像分割[J]. 计算机工程与应用, 2024, 60(19): 242-249. |
| [12] | 孙兴, 蔡肖红, 李明, 张帅, 马金刚. 视觉大模型SAM在医学图像分割中的应用综述[J]. 计算机工程与应用, 2024, 60(17): 1-16. |
| [13] | 周华平, 邓彬. 融合多层次特征的DeepLabv3+轻量级图像分割算法[J]. 计算机工程与应用, 2024, 60(16): 269-275. |
| [14] | 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49. |
| [15] | 石磊, 籍庆余, 陈清威, 赵恒毅, 张俊星. 视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||