[1] NG J Q, YANG Z X, YING H, et al. Bougie location algorithm of lattice biochip based on YOLOv5[J]. Journal of Electronic Imaging, 2022, 31: 063006.
[2] CHEN X, CHEN J, HAN X, et al. A light-weighted CNN model for wafer structural defect detection[J]. IEEE Access, 2020, 8: 24006-24018.
[3] XU S, CHENG Z, GAO Y, et al. Visual wafer dies counting using geometrical characteristics[J]. IET Image Processing, 2014, 8(5): 280-288.
[4] 杨东旭. 基于机器视觉的芯片分选系统研究[D]. 北京: 中国电子科技集团公司电子科学研究院, 2022.
YANG D X. Research on chip sorting system based on machine vision[D]. Beijing: Institute of Electronic Science and Technology, China Electronics Technology Group Corporation, 2022.
[5] 郭毅强. 晶圆表面缺陷视觉检测研究[D]. 深圳: 哈尔滨工业大学, 2019.
GUO Y Q. Research on visual inspection of wafer surface defects[D]. Shenzhen: Harbin Institute of Technology, 2019.
[6] CHEN H C. Automated detection and classification of defective and abnormal dies in wafer images[J]. Applied Sciences, 2020, 10(10): 3423.
[7] 于志斌, 胡泓. 基于YOLO算法与机器视觉的晶圆片表面缺陷检测研究[J]. 新型工业化, 2021, 11(12): 114-117.
YU Z B, HU H. Research on surface defect detection of wafer based on YOLO algorithm and machine vision[J]. The Journal of New Industrialization, 2021, 11(12): 114-117.
[8] LIN Y. Wafer pattern counting, detection and classification based on encoder-decoder CNN structure[C]//Proceedings of the 2022 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, May 13-14, 2022. Piscataway: IEEE Press, 2022: 1-5.
[9] HELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 07-12. New York: IEEE Press, 2015: 3431-3440.
[10] QIN X, ZHANG Z, HUANG C, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, June 15-20, 2019. New York: IEEE Press, 2019: 7471-7481.
[11] ZHOU H, XIE X, LAI J, et al. Interactive two-stream decoder for accurate and fast saliency detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, June 13-19, 2020. New York: IEEE Press, 2020: 9138-9147.
[12] WANG C, ZHANG Y, CUI M, et al. Active boundary loss for semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, California, Feb 2-March 3, 2022: 2397-2405.
[13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[14] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 15th European Conference on Computer Vision (ECCV), Munich, Germany, September 8-14, 2018. Cham: Springer, 2018: 801-818.
[15] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[16] SANDLER M, HOWARD A G, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 18-22, 2018. New York: IEEE Press, 2018: 4510-4520.
[17] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21-26, 2017: 6230-6239.
[18] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[19] ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, June 19-25, 2021. New York: IEEE Press, 2021: 6877-6886.
[20] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. arXiv:2105.15203, 2021.
[21] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[22] YAN H, ZHANG C, WU M. Lawin transformer: improving semantic segmentation transformer with multi-scale representations via large window attention[J]. arXiv:2201.01615, 2022.
[23] DULAM R V S, FEDDERS E R, MAHONEY A R, et al. ConvSegFormer-a convolution aided SegFormer architecture for?detection of?discontinuities in?wrapped interferometric phase imagery of?sea ice[C]//Proceedings of the 22nd Scandinavian Conference on Image Analysis (SCIA 2023), Sirkka, Finland, April 18-21, 2023. Cham: Springer Nature Switzerland, 2023: 203-213.
[24] SU H, YE Y, HUA W, et al. Sasformer: transformers for sparsely annotated semantic segmentation[J]. arXiv:2212.
02019, 2022.
[25] 倪天宇. 晶圆表面缺陷自动检测技术的研究[D]. 上海: 东华大学, 2022.
NI T Y. Research on automatic detection thechnology of wafer surface defects[D]. Shanghai: Donghua University, 2022.
[26] RAO Y, ZHAO W, TANG Y, et al. Hornet: efficient high-order spatial interactions with recursive gated convolutions[J]. arXiv:2207.14284, 2022.
[27] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, June 26-July 1, 2016. New York: IEEE Press, 2016: 3213-3223.
[28] CHENG B, GIRSHICK R B, DOLL'AR P, et al. Boundary iou: improving object-centric image segmentation evaluation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, June 19-25, 2021. New York: IEEE Press, 2021: 15329-15337.
[29] HONG Y, PAN H, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[J]. arXiv:2101.06085, 2021.
[30] WANG J, GOU C X, WU Q, et al. Rtformer: efficient design for real-time semantic segmentation with transformer[J]. arXiv:2210.07124, 2022.
[31] DONG B, WANG P, WANG F. Head-free lightweight semantic segmentation with linear transformer[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Washington DC, June 27, 2023. Menlo Park: AAAI Press, 2023: 516-524. |