
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 41-60.DOI: 10.3778/j.issn.1002-8331.2409-0272
郝鹤菲,张龙豪,崔洪振,朱宵月,彭云峰,李向晖
出版日期:2025-05-01
发布日期:2025-04-30
HAO Hefei, ZHANG Longhao, CUI Hongzhen, ZHU Xiaoyue, PENG Yunfeng, LI Xianghui
Online:2025-05-01
Published:2025-04-30
摘要: 人体姿态估计是计算机视觉领域的重要研究方向,在教育教学、临床诊断、人机交互等多场景均有重要应用。随着深度神经网络提出及发展,其以强大的特征学习能力、大规模并行处理等优势,广泛应用于人体姿态估计,并大幅提高了估计结果准确度和识别效率。以人体姿态估计为研究对象,梳理近5年相关领域100篇包含RNN、CNN、GAN、前沿网络模型等深度神经网络及其变体架构的代表性文献;此外,汇总梳理近5年常用数据集,并阐释了模型常用评估指标。最后,总结现阶段人体姿态估计领域面临的挑战,并展望未来研究,以进一步探讨深度神经网络在人体姿态估计中的应用潜力。
郝鹤菲, 张龙豪, 崔洪振, 朱宵月, 彭云峰, 李向晖. 深度神经网络在人体姿态估计中的应用综述[J]. 计算机工程与应用, 2025, 61(9): 41-60.
HAO Hefei, ZHANG Longhao, CUI Hongzhen, ZHU Xiaoyue, PENG Yunfeng, LI Xianghui. Review of Application of Deep Neural Networks in Human Pose Estimation[J]. Computer Engineering and Applications, 2025, 61(9): 41-60.
| [1] MUNEA T L, JEMBRE Y Z, WELDEGEBRIEL H T, et al. The progress of human pose estimation: a survey and taxonomy of models applied in 2D human pose estimation[J]. IEEE Access, 2020, 8: 133330-133348. [2] CHEN H M, FENG R Y, WU S F, et al. 2D Human pose estimation: a survey[J]. Multimedia Systems, 2023, 29(5): 3115-3138. [3] 苏妍妍, 邱志良, 李帼, 等. 基于深度学习的二维单人姿态估计综述[J]. 计算机工程与应用, 2024, 60(21): 18-37. SU Y Y, QIU Z L, LI G, et al. Review on deep learning-based 2D single-person pose estimation[J]. Computer Engineering and Applications, 2024, 60(21): 18-37. [4] DESMARAIS Y, MOTTET D, SLANGEN P, et al. A review of 3D human pose estimation algorithms for markerless motion capture[J]. Computer Vision and Image Understanding, 2021, 212: 103275. [5] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87. WANG S C, HUANG K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. [6] CHEN Y C, TIAN Y L, HE M Y. Monocular human pose estimation: a survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192: 102897. [7] JANARDHANAN J, UMAMAHESWARI S. A comprehensive study on human pose estimation[C]//Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems. Piscataway: IEEE, 2022: 535-541. [8] ZHENG C, WU W H, CHEN C, et al. Deep learning-based human pose estimation: a survey[J]. ACM Computing Surveys, 2024, 56(1): 1-37. [9] ELMAN J. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. [10] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelber: Springer, 2012: 37-45. [11] LEE K, KIM W, LEE S. From human pose similarity metric to 3D human pose estimator: temporal propagating LSTM networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1781-1797. [12] JANG Y, JEONG I, YOUNESI HERAVI M, et al. Multi-camera-based human activity recognition for human-robot collaboration in construction[J]. Sensors, 2023, 23(15): 6997. [13] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. [14] QIU S X, LI Z H, YE K L, et al. DSiaG: real-time pose estimation and recognition algorithm based on spatial and temporal information[C]//Proceedings of the 2024 4th International Conference on Computer Communication and Artificial Intelligence. Piscataway: IEEE, 2024: 41-45. [15] DU S L, ZHANG Z W, IKENAGA T. AnatPose: bidirectionally learning anatomy-aware heatmaps for human pose estimation[J]. Pattern Recognition, 2024, 155: 110654. [16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [17] JAIN A, TOMPSON J, ANDRILUKA M, et al. Learning human pose estimation features with convolutional networks[J]. arXiv:1312.7302, 2013. [18] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [19] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015). Cham: Springer International Publishing, 2015: 234-241. [20] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2016:?483-499. [21] WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4724-4732. [22] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5693-5703. [23] LI W W, DU R, CHEN S D. Skeleton-based spatio-temporal U-network for 3D human pose estimation in video[J]. Sensors, 2022, 22(7): 2573. [24] GONG F M, MA Y H, ZHENG P, et al. A deep model method for recognizing activities of workers on offshore drilling platform by multistage convolutional pose machine[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104043. [25] DONG X N, YU J, ZHANG J. Joint usage of global and local attentions in hourglass network for human pose estimation[J]. Neurocomputing, 2022, 472: 95-102. [26] FENG R Y, GAO Y X, MA X Q, et al. Mutual information-based temporal difference learning for human pose estimation in video[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 17131-17141. [27] LUO W, XUE J Y. Human pose estimation based on improved HRNet model[C]//Proceedings of the 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence. Piscataway: IEEE, 2023: 153-157. [28] BULAT A, KOSSAIFI J, TZIMIROPOULOS G, et al. Toward fast and accurate human pose estimation via soft-gated skip connections[C]//Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2020: 8-15. [29] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [31] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [32] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310. [33] SRIVASTAV V, GANGI A, PADOY N. Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room[J]. Medical Image Analysis, 2022, 80: 102525. [34] HUANG Y, SHUM H P H, HO E S L, et al. High-speed multi-person pose estimation with deep feature transfer[J]. Computer Vision and Image Understanding, 2020, 197: 103010. [35] OSOKIN D. Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose[J]. arXiv:1811.12004, 2018. [36] 方益, 石守东, 方靖森, 等. 基于空间交叉卷积的轻量级人体姿态估计算法[J]. 传感技术学报, 2024, 37(3): 439-445. FANG Y, SHI S D, FANG J S, et al. Lightweight human pose estimation algorithm based on spatial cross convolution[J]. Chinese Journal of Sensors and Actuators, 2024, 37(3): 439-445. [37] XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 472-487. [38] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. [39] ZHANG H R, QI Y F, CHEN H L, et al. LSDNet: lightweight stochastic depth network for human pose estimation[J]. The Visual Computer, 2025, 41(1): 257-270. [40] KOCABAS M, KARAGOZ S, AKBAS E. MultiPoseNet: fast multi-person pose estimation using pose residual network[C]//Proceedings of the European Conference on Computer VisioN (ECCV). Cham: Springer International Publishing, 2018: 437-453. [41] ZHANG Z W, LIU M G, SHEN J Y, et al. Lightweight whole-body human pose estimation with two-stage refinement training strategy[J]. IEEE Transactions on Human-Machine Systems, 2024, 54(1): 121-130. [42] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680. [43] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [44] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Advances in Neural Information Processing Systems, 2017: 5767-5777. [45] DAYARATHNA T, MUTHUKUMARANA T, RATHNAYAKA Y, et al. Privacy-preserving in-bed pose monitoring: a fusion and reconstruction study[J]. Expert Systems with Applications, 2023, 213: 119139. [46] BARSOUM E, KENDER J, LIU Z C. HP-GAN: probabilistic 3D human motion prediction via GAN[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1418-1427. [47] RADFORD A, METZ L, CHINTALA S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. [48] SHOMAN M, GHOUL T, LANZARO G, et al. Enforcing traffic safety: a deep learning approach for detecting motorcyclists’ helmet violations using YOLOv8 and deep convolutional generative adversarial network-generated images[J]. Algorithms, 2024, 17(5): 202. [49] 姜友鹏, 华阳, 宋晓宁. 空间注意力与位置优化的三维人体姿态估计域适应算法[J]. 计算机科学与探索, 2024, 18(9): 2384-2394. JIANG Y P, HUA Y, SONG X N. Domain adaptation algorithm for 3D human pose estimation with spatial attention and position optimization[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2384-2394. [50] TIAN L, WANG P, LIANG G Q, et al. An adversarial human pose estimation network injected with graph structure[J]. Pattern Recognition, 2021, 115: 107863. [51] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [52] SONG C Y, WANG S G, CHEN M M, et al. A multimodal discrimination method for the response to Name behavior of autistic children based on human pose tracking and head pose estimation[J]. Displays, 2023, 76: 102360. [53] LIU L, DAI Y X, LIU Z H. Real-time pose estimation and motion tracking for motion performance using deep learning models[J]. Journal of Intelligent Systems, 2024, 33(1): 20230288. [54] ZHANG Y T, WANG Z Y, LI M L, et al. SP-YOLO: an end-to-end lightweight network for real-time human pose estimation[J]. Signal, Image and Video Processing, 2024, 18(1): 863-876. [55] DING J, NIU S W, NIE Z G, et al. Research on human posture estimation algorithm based on YOLO-pose[J]. Sensors, 2024, 24(10): 3036. [56] DONG X Q, WANG X C, LI B J, et al. YH-Pose: human pose estimation in complex coal mine scenarios[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107338. [57] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [58] ZHENG C, ZHU S J, MENDIETA M, et al. 3D human pose estimation with spatial and temporal transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11636-11645. [59] LI W H, LIU H, TANG H, et al. MHFormer: multi-hypothesis transformer for 3D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13137-13146. [60] LI W H, LIU H, TANG H, et al. Multi-hypothesis representation learning for transformer-based 3D human pose estimation[J]. Pattern Recognition, 2023, 141: 109631. [61] YANG S, QUAN Z B, NIE M, et al. TransPose: keypoint localization via transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11782-11792. [62] MAO W A, GE Y T, SHEN C H, et al. TFPose: direct human pose estimation with transformers[J]. arXiv:2103.15320, 2021. [63] ALEXEY D. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [64] XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision transformer baselines for human pose estimation[C]//Advances in Neural Information Processing Systems, 2022: 38571-38584. [65] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [66] LI M Y, HU H N, XIONG J J, et al. TSwinPose: enhanced monocular 3D human pose estimation with JointFlow[J]. Expert Systems with Applications, 2024, 249: 123545. [67] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [68] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [69] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3425-3435. [70] 马金林, 崔琦磊, 马自萍, 等. 预加权调制密集图卷积网络三维人体姿态估计[J]. 计算机科学与探索, 2024, 18(4): 963-977. MA J L, CUI Q L, MA Z P, et al. Pre-weighted modulated dense graph convolutional networks for 3D human pose estimation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 963-977. [71] CHEN Z M, DAI J, BAI J X, et al. DGFormer: dynamic graph transformer for 3D human pose estimation[J]. Pattern Recognition, 2024, 152: 110446. [72] KAMEL A, SHENG B, LI P, et al. Hybrid refinement-correction heatmaps for human pose estimation[J]. IEEE Transactions on Multimedia, 2020, 23: 1330-1342. [73] LI H R, YAO H X, HOU Y X. HPnet: hybrid parallel network for human pose estimation[J]. Sensors, 2023, 23(9): 4425. [74] YUAN Z X, ZHANG X T, WU S P, et al. Multi hybrid extractor network for 3D human pose estimation[C]//Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 3170-3174. [75] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[J]. arXiv:2312.00752, 2023. [76] ZHANG X Y, BAO Q Q, CUI Q P, et al. Pose magic: efficient and temporally consistent human pose estimation with a hybrid mamba-GCN network[J]. arXiv:2408.02922, 2024. [77] JOHNSON S, EVERINGHAM M. Clustered pose and nonlinear appearance models for human pose estimation[C]//Proceedings of the British Machine Vision Conference, 2010: 1-11. [78] JHUANG H, GALL J, ZUFFI S, et al. Towards understanding action recognition[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 3192-3199. [79] SAPP B, TASKAR B. MODEC: multimodal decomposable models for human pose estimation[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3674-3681. [80] ZHANG W Y, ZHU M L, DERPANIS K G. From actemes to action: a strongly-supervised representation for detailed action understanding[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2248-2255. [81] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755. [82] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3686-3693. [83] CHERIAN A, MAIRAL J, ALAHARI K, et al. Mixing body-part sequences for human pose estimation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2361-2368. [84] GONG K, LIANG X D, ZHANG D Y, et al. Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6757-6765. [85] XIA F T, WANG P, CHEN X J, et al. Joint multi-person pose estimation and semantic part segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6080-6089. [86] LI J F, WANG C, ZHU H, et al. CrowdPose: efficient crowded scenes pose estimation and a new benchmark[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10863-10872. [87] ZHANG S-H, LI R L, DONG X, et al. Pose2Seg: detection free human instance segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 889-898. [88] LIU H, CHEN Y, ZHAO W L, et al. Human pose recognition via adaptive distribution encoding for action perception in the self-regulated learning process[J]. Infrared Physics & Technology, 2021, 114: 103660. [89] SIGAL L, BALAN A O, BLACK M J. HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated HumanMotion[J]. International Journal of Computer Vision, 2010, 87(1): 4-27. [90] KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 2556-2563. [91] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325-1339. [92] JOO H, SIMON T, LI X L, et al. Panoptic studio: a massively multiview system for social interaction capture[J]. arXiv:1612.03153, 2016. [93] MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]//Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 506-516. [94] RHODIN H, MEYER F, SP?RRI J, et al. Learning monocular 3D human pose estimation from multi-view images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8437-8446. [95] MEHTA D, SOTNYCHENKO O, MUELLER F, et al. Single-shot multi-person 3D pose estimation from monocular RGB[C]//Proceedings of the 2018 International Conference on 3D Vision. Piscataway: IEEE, 2018: 120-130. [96] LI T J, LIU J, ZHANG W, et al. UAV-human: a large benchmark for human behavior understanding with unmanned aerial vehicles[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16266-16275. [97] LI R L, YANG S, ROSS D A, et al. AI choreographer: music conditioned 3D dance generation with AIST[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13381-13392. [98] SONG I, LEE J, RYU M, et al. Motion-aware heatmap regression for human pose estimation in videos[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 1245-1253. [99] MUKHERJEE S S, ROBERTSON N M. Deep head pose: gaze-direction estimation in multimodal video[J]. IEEE Transactions on Multimedia, 2015, 17(11): 2094-2107. [100] WANG C, LI J F, LIU W T, et al. HMOR: hierarchical multi-person ordinal relations for monocular multi-person 3D pose estimation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 242-259. [101] NEUMANN L, VEDALDI A. Tiny people pose[C]//Proceedings of the 14th Asian Conference on Computer Vision. Cham:Springer International Publishing, 2019: 558-574. [102] WANG C, ZHANG F, ZHU X T, et al. Low-resolution human pose estimation[J]. Pattern Recognition, 2022, 126: 108579. [103] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596. [104] ZHAO S, GONG M, LIU T, et al. Domain generalization via entropy regularization[C]//Advances in Neural Information Processing Systems, 2020: 16096-16107. [105] QIAO F C, ZHAO L, PENG X. Learning to learn single domain generalization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12553-12562. [106] XU D N, ZHANG R, GUO L J, et al. LDNet: lightweight dynamic convolution network for human pose estimation[J]. Advanced Engineering Informatics, 2022, 54: 101785. [107] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2820-2828. [108] FANG H S, LI J F, TANG H Y, et al. AlphaPose: whole-body regional multi-person pose estimation and tracking in real-time[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 7157-7173. |
| [1] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [2] | 赵恩浩, 凌捷. 基于GAN的无数据黑盒对抗攻击方法[J]. 计算机工程与应用, 2025, 61(7): 204-212. |
| [3] | 王燕妮, 胡敏, 韩世鹏, 陈艺瑄, 吕昊. 多尺度和多层级特征融合的人体姿态估计[J]. 计算机工程与应用, 2025, 61(6): 199-209. |
| [4] | 张奇, 周威, 胡伟超, 于鹏程. 融合递进式域适应和交叉注意力的事故检测方法[J]. 计算机工程与应用, 2025, 61(6): 349-360. |
| [5] | 洪书颖, 张东霖. 语义信息处理方式分类的车道线检测技术研究综述[J]. 计算机工程与应用, 2025, 61(5): 1-17. |
| [6] | 王佳恬, 李凡长. 一种线性迁移元学习算法的研究[J]. 计算机工程与应用, 2025, 61(5): 177-186. |
| [7] | 陈善静, 李震, 王正刚, 刘宁波, 何韵. 西藏地区传统民居建筑典型特征遥感提取方法[J]. 计算机工程与应用, 2025, 61(3): 349-358. |
| [8] | 张换香, 李梦云, 张景. 基于多模态信息融合的中文隐式情感分析[J]. 计算机工程与应用, 2025, 61(2): 179-190. |
| [9] | 和涛, 栗娟. 改进DDPG的端边DNN协同推理策略[J]. 计算机工程与应用, 2025, 61(2): 304-315. |
| [10] | 熊偌炎, 张上, 张岳. 多尺度特征响应融合的复杂场景红外目标跟踪[J]. 计算机工程与应用, 2025, 61(12): 243-257. |
| [11] | 莫寒, 徐杨, 冯明文. 结合空间结构和纹理特征增强的人体姿态迁移[J]. 计算机工程与应用, 2025, 61(11): 259-271. |
| [12] | 付均尚, 田莹. 采用多信息残差融合和多尺度特征表达的水下目标检测[J]. 计算机工程与应用, 2025, 61(11): 272-283. |
| [13] | 蔡子悦, 袁振岳, 庞明勇. 深度学习的点云语义分割方法综述[J]. 计算机工程与应用, 2025, 61(11): 22-30. |
| [14] | 杨浩哲, 郭楠. 基于图像的虚拟试衣综述——从深度学习到扩散模型[J]. 计算机工程与应用, 2025, 61(10): 19-35. |
| [15] | 高宇宁, 王安成, 赵华凯, 罗豪龙, 杨子迪, 李建胜. 基于深度强化学习的视觉导航方法综述[J]. 计算机工程与应用, 2025, 61(10): 66-78. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||