计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 267-278.DOI: 10.3778/j.issn.1002-8331.2403-0293

• 图形图像处理 • 上一篇    下一篇

融合几何注意力与信息选择的点云处理模型

刘腊梅,柳志强   

  1. 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125100
  • 出版日期:2025-06-15 发布日期:2025-06-13

Point Cloud Processing Model Integrating Geometric Attention and Information Selection

LIU Lamei, LIU Zhiqiang   

  1. School of Software, Liaoning Technical University, Huludao, Liaoning 125100, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 现有的针对点云数据的自注意力机制虽然尝试使用流形上的测地线距离处理数据,但通常缺乏有效的预处理,导致数据无法充分适应流形特性。同时,传统的几何注意力机制存在过度聚焦的问题,无法在数据的不同重要部分之间合理分配注意力。为了提高点云数据表示的有效性并增强模型的鲁棒性,提出了一种基于几何注意力机制和信息选择的点云分类与分割模型。该模型采用类似PointNet的结构以增强特征提取能力和网络性能。在计算测地线距离之前,通过立体投影预处理数据,使其更贴合流形特征分布,从而改进了几何注意力机制的有效性。引入一种结合KL散度和熵的信息选择方法,以平衡注意力分布并提取更具代表性的特征,解决了几何注意力机制不稳定的问题。实验结果表明,与当前主流的高性能预训练模型相比,该模型在ModelNet40和ScanObjectNN数据集上的分类精度分别达到了94.9%和87.9%,整体性能提高了0.1~2.1个百分点。此外,在ShapeNetPart数据集的分割实验中,该模型同样展示了稳定的性能,凸显了信息选择模块在处理复杂点云数据中的有效性。

关键词: 深度学习, 点云分类, 点云分割, 注意力机制, 几何距离, 测地线, 信息选择模块

Abstract: Existing self-attention mechanisms for point cloud data utilize geodesic distances on manifolds but often lack effective preprocessing, hindering adaptation to manifold characteristics. Furthermore, traditional geometric attention mechanisms suffer from over-focusing, failing to distribute attention adequately across critical data regions. To enhance point cloud data representation and increase model robustness, a classification and segmentation model based on geometric attention mechanisms and information selection is proposed. The model employs a PointNet-like architecture to boost feature extraction capabilities and network performance. Data is preprocessed through stereographic projection before computing geodesic distances, allowing it to better conform to manifold characteristics, thereby improving the effectiveness of the geometric attention mechanism. Then, an information selection method combining KL divergence and entropy is introduced to balance the attention distribution and extract more representative features, addressing the instability problem of traditional geometric attention mechanisms. Experimental results demonstrate that the proposed model achieves classification accuracies of 94.9% on ModelNet40 and 87.9% on ScanObjectNN, with performance improvements ranging from 0.1 to 2.1 percentage points. In segmentation tasks on the ShapeNetPart dataset, the model also shows stable performance, highlighting the effectiveness of the information selection module in processing complex point cloud data.

Key words: deep learning, point cloud classification, point cloud segmentation, attention mechanism, geometric distance, geodesic, information selection module