[1] 任柯燕, 谷美颖, 袁正谦, 等. 自动驾驶3D目标检测研究综述[J]. 控制与决策, 2023, 38(4): 865-889.
REN K Y, GU M Y, YUAN Z Q, et al. 3D object detection algorithms in autonomous driving: a review[J]. Control and Decision, 2023, 38(4): 865-889.
[2] 贾晓辉, 冯重阳, 刘今越. 基于点云匹配的AR饰面作业系统跟踪注册方法[J]. 计算机工程与应用, 2023, 59(6): 291-298.
JIA X H, FENG C Y, LIU J Y. Tracking and registration method based on point cloud matching for augmented reality facing work system[J]. Computer Engineering and Applications, 2023, 59(6): 291-298.
[3] 方威扬, 林东鑫, 寇万福, 等. 医学图像三维重建系统的研究进展[J]. 中国医学物理学杂志, 2022, 39(7): 823-827.
FANG W Y, LIN D X, KOU W F, et al. Advances in medical image three?dimensional reconstruction system[J]. Chinese Journal of Medical Physics, 2022, 39(7): 823-827.
[4] 杨春雨, 张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报, 2022, 47(7): 2844-2872.
YANG C Y, ZHANG X. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society, 2022, 47(7): 2844-2872.
[5] 党吉圣, 杨军. 深度图注意力CNN的三维模型识别[J]. 计算机科学与探索, 2021, 15(1): 141-149.
DANG J S, YANG J. 3D model recognition based on deep graph attention CNN[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 141-149.
[6] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 922-928.
[7] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953.
[8] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[9] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
[10] LIU Y H, TIAN B, LV Y S, et al. Point cloud classification using content-based transformer via clustering in feature space[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(1): 231-239.
[11] LI Z, TANG X, XU Z, et al. Geodesic self-attention for 3D point clouds[C]//Advances in Neural Information Processing Systems, 2022: 6190-6203.
[12] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017.
[13] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6411-6420.
[14] XU M, DING R, ZHAO H, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3173-3182.
[15] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[16] WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10296-10305.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[18] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[19] ZHAO H, JIANG L, JIA J, et al. Point Transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16259-16268.
[20] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[21] LAI X, LIU J, JIANG L, et al. Stratified Transformer for 3D point cloud segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8500-8509.
[22] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[23] ZEID K A, SCHULT J, HERMANS A, et al. Point2Vec for self-supervised representation learning on point clouds[C]//Proceedings of the 45th DAGM German Conference on Pattern Recognition. Cham: Springer Nature Switzerland, 2024: 131-146.
[24] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017.
[25] LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[J]. arXiv:1608.03983,2016.
[26] LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[C]//Advances in Neural Information Processing Systems, 2018.
[27] YU X, TANG L, RAO Y, et al. Point-BERT: pre-training 3D point cloud Transformers with masked point modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 19313-19322.
[28] PANG Y, WANG W, TAY F E, et al. Masked autoencoders for point cloud self-supervised learning[C]//Proceedings of the European Conference on Computer Vision, 2022: 604-621.
[29] ZHANG R, GUO Z, GAO P, et al. Point-M2AE: multi-scale masked autoencoders for hierarchical point cloud pre-training[C]//Advances in Neural Information Processing Systems, 2022: 27061-27074. |