[1] 周润民, 胡旭耀, 吴克伟, 等. 基于交叉注意力的方面级情感分析[J]. 计算机工程与应用, 2023, 59(9): 190-197.
ZHOU R M, HU X Y, WU K W, et al. Aspect-based sentiment analysis with cross-heads attention[J]. Computer Engineering and Applications, 2023, 59(9): 190-197.
[2] 赵萍, 窦全胜, 唐焕玲, 等. 融合词信息嵌入的注意力自适应命名实体识别[J]. 计算机工程与应用, 2023, 59(8): 167-174.
ZHAO P, DOU Q S, TANG H L, et al. Attention adaptive model with word information embeding for named entity recognition[J]. Computer Engineering and Applications, 2023, 59(8): 167-174.
[3] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018: 2227-2237.
[4] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 1877-1901.
[5] SONG K, TAN X, QIN T, et al. MPNet: masked and permuted pre?training for language understanding[J]. arXiv:2004. 09297, 2020.
[6] LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[C]//Proceedings of the International Conference on Learning Representations, 2020.
[7] 叶雪梅, 毛雪岷, 夏锦春, 等. 文本分类TF-IDF算法的改进研究[J]. 计算机工程与应用, 2019, 55(2): 104-109.
YE X M, MAO X M, XIA J C, et al. Improved approach to TF-IDF algorithm in text classification[J]. Computer Engineering and Applications, 2019, 55(2): 104-109.
[8] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[9] GUO X, ZHANG H, YANG H, et al. A single attention-based combination of CNN and RNN for relation classification[J]. IEEE Access, 2019, 7: 12467-12475.
[10] 田慧, 武杰, 边云, 等. 基于DenseNet结合迁移学习的胰腺囊性肿瘤分类方法[J]. 波谱学杂志, 2023, 40(3): 270-279.
TIAN H, WU J, BIAN Y, et al. Classification of pancreatic cystic tumors based on DenseNet and transfer learning[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279.
[11] 李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018, 38(11): 3075-3080.
LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network[J]. Journal of Computer Applications, 2018, 38(11): 3075-3080.
[12] 白思萌, 牛振东, 何慧, 等. 基于超图注意力网络的生物医学文本分类方法[J]. 数据分析与知识发现, 2022, 6(11): 13-24.
BAI S M, NIU Z D, HE H, et al. Biomedical text classification method based on hypergraph attention network[J]. Data Analysis and Knowledge Discovery, 2022, 6(11): 13-24.
[13] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[15] 刘威, 马磊, 李凯, 等. 基于多粒度字形增强的中文医学命名实体识别[J]. 计算机工程, 2024, 50(2): 337-344.
LIU W, MA L, LI K, et al. Chinese medical named entity recognition based on multi-granularity glyph enhancement[J]. Computer Engineering, 2024, 50(2): 337-344.
[16] 李帅驰, 杨志豪, 王鑫雷, 等. 基于特征增强的开放域知识库问答系统[J]. 计算机工程与应用, 2022, 58(17): 206-212.
LI S C, YANG Z H, WANG X L, et al. Open domain Chinese knowledge based question answering based on feature enhancement[J]. Computer Engineering and Applications, 2022, 58(17): 206-212.
[17] 陆晓蕾, 倪斌. 基于预训练语言模型的BERT-CNN多层级专利分类研究[J]. 中文信息学报, 2021, 35(11): 70-79.
LU X L, NI B. BERT-CNN: a hierarchical patent classifier based on pre-trained language model[J]. Journal of Chinese Information Processing, 2021, 35(11): 70-79.
[18] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized bert pretraining approach[J]. arXiv:1907.11692, 2019.
[19] 王廷轩, 刘韬, 王振亚, 等. 知识蒸馏与迁移学习的轴承故障诊断应用研究[J]. 计算机工程与应用, 2023, 59(13): 289-297.
WANG T X, LIU T, WANG Z Y, et al. Applied research on bearing fault diagnosis based on knowledge distillation and transfer learning[J]. Computer Engineering and Applications, 2023, 59(13): 289-297.
[20] 孙红, 黄瓯严. 基于知识蒸馏的短文本分类方法[J]. 软件导刊, 2021, 20(6): 23-27.
SUN H, HUANG O Y. Short text classification method based on knowledge distillation[J]. Software Guide, 2021, 20(6): 23-27.
[21] LEI T. When attention meets fast recurrence: training language models with reduced compute[J]. arXiv:2102.12459, 2021.
[22] ZHOU W, XU C, MCAULEY J. BERT learns to teach: knowledge distillation with meta learning[J]. arXiv:2106. 04570, 2021.
[23] XU Z. RoBERTa-wwm-ext fine-tuning for Chinese text classification[J]. arXiv:2103.00492, 2021.
[24] 宗辉, 张泽宇, 杨金璇, 等. 基于人工智能的中文临床试验筛选标准文本分类研究[J]. 生物医学工程学杂志, 2021, 38(1): 105-110.
ZONG H, ZHANG Z Y, YANG J X, et al. Artificial intelligence based Chinese clinical trials eligibility criteria classification[J]. Journal of Biomedical Engineering, 2021, 38(1): 105-110.
[25] 杨飞洪, 王序文, 李姣. 基于BERT-TextCNN模型的临床试验筛选短文本分类方法[J]. 中华医学图书情报杂志, 2021, 30(1): 54-59.
YANG F H, WANG X W, LI J. BERT-TextCNN-based classification of short texts from clinical trials[J]. Chinese Journal of Medical Library and Information Science, 2021, 30(1): 54-59.
[26] CUI Y, CHE W, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]//Findings of the Association for Computational Linguistics, 2020: 657-668.
[27] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[28] 叶晨晨. 面向生物医学领域的引入外部信息的多标签文本分类研究[D]. 南京: 东南大学, 2022.
YE C C. Research on multi-label text classification with external information for biomedical donmain[D]. Nanjing: Southeast University, 2022.
[29] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 562-570. |