[1] PENG S. Application of medical image detection technology based on deep learning in pneumoconiosis diagnosis[J]. Data Intelligence, 2023, 5(4): 1033-1047.
[2] 张婷, 张兴忠, 王慧民, 等. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336.
ZHANG T, ZHANG X Z, WANG H M, et al. 3D object detection in substation scene based on graph neural nerwork[J]. Computer Engineering and Applications, 2023, 59(9): 329-336.
[3] ZHANG T, YE S, ZHANG K, et al. A systematic DNN weight pruning framework using alternating direction method of multipliers[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 184-199.
[4] LI R, WANG Y, LIANG F, et al. Fully quantized network for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2810-2819.
[5] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[6] 黄磊, 杨媛, 杨成煜, 等. FS-YOLOv5: 轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224.
HUANG L, YANG Y, YANG C Y, et al. FS-YOLOv5: ligntweight infrared rode target detection method[J]. Computer Engineering and Applications, 2023, 59(9): 215-224.
[7] ZHU J, TANG S, CHEN D, et al. Complementary relation contrastive distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9260-9269.
[8] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[J]. arXiv:1412.6550, 2014.
[9] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015.
[10] HEO B, LEE M, YUN S, et al. Knowledge transfer via distillation of activation boundaries formed by hidden neurons[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3779-3787.
[11] WANG T, YUAN L, ZHANG X, et al. Distilling object detectors with fine-grained feature imitation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4933-4942.
[12] GUO J, HAN K, WANG Y, et al. Distilling object detectors via decoupled features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2154-2164.
[13] ZHANG L, MA K. Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors[C]//Proceedings of the International Conference on Learning Representations, 2020.
[14] DU Z X, ZHANG R, CHANG M, et al. Distilling object detectors with feature richness[C]//Advances in Neural Information Processing Systems, 2021: 5213-5224.
[15] YANG Z, LI Z, JIANG X, et al. Focal and global knowledge distillation for detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4643-4652.
[16] ZOU Z, SHI Z. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2017, 27(3): 1100-1111.
[17] LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), 2017: 1-6.
[18] ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4203-4212.
[19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 2016: 21-37.
[20] HU H, GU J, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3588-3597.
[21] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7310-7311.
[22] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[23] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[24] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[25] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[26] SUN X, LIU Y, YAN Z, et al. SRAF-Net: shape robust anchor-free network for garbage dumps in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 6154-6168.
[27] XU T, SUN X, DIAO W, et al. ASSD: feature aligned single-shot detection for multiscale objects in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-17.
[28] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[J]. arXiv:1612.03928, 2016.
[29] FARHADI M, YANG Y. TKD: temporal knowledge distillation for active perception[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020: 942-951.
[30] LIU Y, CHEN K, LIU C, et al. Structured knowledge distillation for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2604-2613.
[31] GE S, ZHAO S, LI C, et al. Low-resolution face recognition in the wild via selective knowledge distillation[J]. IEEE Transactions on Image Processing, 2018, 28(4): 2051-2062.
[32] XU C, ZHOU W, GE T, et al. BERT-of-theseus: compressing bert by progressive module replacing[J]. arXiv:2002.02925, 2020.
[33] CHEN G, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation[C]//Advances in Neural Information Processing Systems, 2017.
[34] LI Q, JIN S, YAN J. Mimicking very efficient network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6356-6364.
[35] DAI X, JIANG Z, WU Z, et al. General instance distillation for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7842-7851.
[36] YANG Y, SUN X, DIAO W, et al. Adaptive knowledge distillation for lightweight remote sensing object detectors optimizing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[37] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[38] CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[39] CHEN K, WANG J, PANG J, et al. MMDetection: open mmlab detection toolbox and benchmark[J]. arXiv:1906. 07155, 2019.
[40] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012. |