计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (3): 220-227.DOI: 10.3778/j.issn.1002-8331.2208-0469

• 图形图像处理 • 上一篇    下一篇

自适应特征整合与参数优化的类增量学习方法

徐岸,吴永明,郑洋   

  1. 1.贵州大学 省部共建公共大数据国家重点实验室,贵阳 550025
    2.贵州大学 现代制造教育部重点实验室,贵阳 550025
  • 出版日期:2024-02-01 发布日期:2024-02-01

Class Incremental Learning by Adaptive Feature Consolidation with Parameter Optimization

XU An, WU Yongming, ZHENG Yang   

  1. 1.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
    2.Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang 550025, China
  • Online:2024-02-01 Published:2024-02-01

摘要: 针对深度网络模型在增量式场景下图片分类任务所产生的灾难性遗忘问题,提出一种自适应特征整合与权重选择的类增量学习方法。该方法以知识蒸馏作为基础框架,对前后任务模型的主干网络和分类网络的输出特征进行整合,利用蒸馏约束与自定义差异损失使当前模型具有历史旧模型的泛化能力。在增量学习阶段,对神经网络模型参数的重要性进行评价,学习新任务时,重要参数的改变会受到惩罚,从而有效防止新模型覆盖于以前任务相关的重要知识。实验结果表明,所提方法可以发掘模型的增量学习能力,有效缓解了灾难性遗忘。

关键词: 增量学习, 灾难性遗忘, 参数优化, 特征整合, 知识蒸馏

Abstract: Aiming at the catastrophic forgetting problem generated by deep network models for picture classification tasks in incremental scenarios, a class incremental learning method with adaptive feature consolidation and weight selection is proposed. Firstly, the method uses knowledge distillation as the basic framework to integrate the output features of the backbone and classification networks of the before and after task models, and uses distillation constraints with custom disparity loss to make the current model have the generalization ability of the old historical model. In the incremental learning phase, the importance of the neural network model parameters is evaluated, while changes in important parameters are penalized when learning a new task, thus effectively preventing the new model from overwriting important knowledge related to the previous task. The experimental results show that the proposed method can explore the incremental learning ability of the model and effectively alleviate catastrophic forgetting.

Key words: incremental learning, catastrophic forgetting, parametric optimization, feature consolidation, knowledge distillation