[1] TAO C, LU W, QI J, et al. Spatial information considered network for scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 984-988.
[2] ANWER R M, KHAN F S, VAN DE WEIJER J, et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 74-85.
[3] 蓝金辉, 王迪, 申小盼. 卷积神经网络在视觉图像检测的研究进展[J]. 仪器仪表学报, 2020, 41(4): 167-182.
LAN J H, WANG D, SHEN X P. Research progress on visual image detection based on convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 167-182.
[4] 李炳臻, 刘克, 顾佼佼,等. 卷积神经网络研究综述[J]. 计算机时代, 2021(4): 8-12.
LI B Z, LIU K, GU J J, et al. Review of the researches on convolutional neural networks[J]. Computer Era, 2021(4): 8-12.
[5] 刘腊梅, 王晓娜, 刘万军, 等. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142.
LIU L M, WANG X N, LIU W J, et al. Image semantic segmentation method with fusion of transposed convolution and deep residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142.
[6] 欧阳柳, 贺禧, 瞿绍军. 全卷积注意力机制神经网络的图像语义分割[J]. 计算机科学与探索, 2022, 16(5): 1136-1145.
OUYANG L, HE X, QU S J. Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145.
[7] 张哲晗, 方薇, 杜丽丽, 等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40(3): 40-49.
ZHANG Z H, FANG W, DU L L, et al. Semantic segmentation of remote sensing image based on encoder-decoder convolutional neural network[J]. Acta Optica Sinica, 2020, 40(3): 40-49.
[8] CHENG G, YANG C, YAO X, et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811-2821.
[9] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[10] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[11] LEMKE C, BUDKA M, GABRYS B. Meta-learning: a survey of trends and technologies[J]. Artificial Intelligence Review, 2015, 44(1): 117-130.
[12] YANG R, HUANG H M, HONG Q H, et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors[J]. Advanced Functional Materials, 2018, 28(5):1704455.
[13] LEE J, YANG C. Deep neural network and meta-learning-based reactive sputtering with small data sample counts[J]. Journal of Manufacturing Systems, 2022, 62: 703-717.
[14] HU J, LU J, TAN Y P. Discriminative deep metric learning for face verification in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1875-1882.
[15] SOHN K. Improved deep metric learning with multi-class N-pair loss objective[C]//Advances in Neural Information Processing Systems 29, 2016: 1849-1857.
[16] HUBBALLI N, KHANDAIT P. KeyClass: efficient keyword matching for network traffic classification[J]. Computer Communications, 2022, 185: 79-91.
[17] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[18] LI Z, HUANG H, ZHANG Z, et al. Manifold learning-based semisupervised neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5508712.
[19] ZHANG C, CAI Y, LIN G, et al. DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12200-12210.
[20] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the Sigspatial International Conference on Advances in Geographic Information Systems, 2010: 270.
[21] XIA G S, HU J, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
[22] AFRASIYABI A, LALONDE J F, GAGNé C. Mixture-based feature space learning for few-shot image classification[C]//Proceedings of the 2021 International Conference on Computer Vision, 2021.
[23] WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications, 2018, 77: 10437-10453.
[24] HU J, WANG H, WANG J, et al. SA-Net: a scale-attention network for medical image segmentation[J]. PLoS One, 2021, 16(4): e0247388.
[25] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121.
[26] CAI L, LI H, DONG W, et al. Micro-expression recognition using 3D DenseNet fused squeeze-and-excitation networks[J]. Applied Soft Computing, 2022, 119: 108594.
[27] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135. |