[1] 王德文, 李业东. 基于WGAN图片去模糊的绝缘子目标检测[J]. 电力系统保护与控制, 2020, 40(5): 188-198.
WANG D W, LI Y D. Insulator target detection based on WGAN image deblurring[J]. Electric Power Automation Equipment, 2020, 40(5): 188-198.
[2] 汤浩征. 基于绝缘子污闪泄露电流的预警系统设计与实现[D]. 北京: 华北电力大学(北京), 2017.
TANG H Z. Design and implementation of early warning system based on insulator pollution flash over leakage current[D]. Beijing: North China Electric Power University (Beijing), 2017.
[3] CHEN L, LIN F, CHEN M J, et al. Influence for ambient relative humidity and pollution on infrared detection of zero resistance insulators[J]. Frontiers in Energy Research, 2022. DOI: 10.3389/fenrg.2022.942408.
[4] 王维, 鲁海亮, 李纯, 等. 基于不同倾角下水珠形态量化特征的V串复合绝缘子憎水性判定方法[J]. 高电压技术, 2023, 49(4): 1665-1674.
WANG W, LU H L, LI C, et al. Determination method of hydrophobicity of V-string composite insulators based on quantitative characteristics of water droplet morphology under different inclination angles[J]. High Voltage Engineering, 2023, 49(4): 1665-1674.
[5] 骆国防, 陆克昀, 王月强. 特高压变电站绝缘子超声波检测[J]. 华东电力, 2014, 42(12): 2818-2820.
LUO G F, LU K Y, WANG Y Q. Ultrasonic testing of UHV substation insulator[J]. East China Electric Power, 2014, 42(12): 2818-2820.
[6] 梁捷生. 复合绝缘子的表面电场仿真与泄露电流实验研究[J]. 能源与环境, 2022(1): 24-27.
LIANG J S. Simulation of surface electric field and experimental study of leakage current in composite insulators[J]. Energy and Environment, 2022(1): 24-27.
[7] 蔡正梓, 李卫国, 曹文彬, 等. 基于WiFi通信的绝缘子电阻检测机器人的研制[J]. 中国电力, 2015, 48(12): 23-26.
CAI Z X, LI W G, CAO W B, et al. Development of an insulator resistance testing robot based on WiFi communication[J]. Electric Power, 2015, 48(12): 23-26.
[8] 董军, 李博, 翟洪达, 等. 基于多旋翼无人机的复合绝缘子憎水性带电检测装置研究[J]. 电力科学与技术学报, 2020, 35(6): 171-179.
DONG J, LI B, ZHAI H D, et al. Research on the hydrophobic testing device of composite insulator based on the multi-rotor UAV[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 171-179.
[9] 师涛. 悬式绝缘子内部人工缺陷的相控阵超声波检测策略研究[J]. 电子制作, 2019(16): 90-92.
SHI T. Phased-array ultrasound of artificial defects inside suspension insulators detection strategy study[J]. Practical Electronics, 2019(16): 90-92.
[10] 刘子英, 肖建华, 邓芳明, 等. 基于可见光图像识别的绝缘子污秽等级判别[J]. 传感器与微系统, 2019, 38(12): 136-139.
LIU Z Y, XIAO J H, DENG F M, et al. Identification of insulator contamination grade based on visible light image recognition[J]. Transducer and Microsystem Technologies, 2019, 38(12): 136-139.
[11] 王晶晶, 杨俊杰. 改进Canny算法在绝缘子串红外图像边缘检测中的应用[J]. 电瓷避雷器, 2022(3): 179-185.
WANG J J, YANG J J. Application of improved Canny algorithm in edge detection of high voltage insulator string[J]. Insulator and Surge Arresters, 2022(3): 179-185.
[12] 刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J]. 高电压技术, 2023, 49(9): 3584-3595.
LIU T P, LI B Q, QIN L, et al. Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines[J]. High Voltage Engineering, 2023, 49(9): 3584-3595.
[13] 孙磊, 吴文海, 柯坚, 等. 基于可见光图像的铁路接触网绝缘子污秽状况检测[J]. 电瓷避雷器, 2019(5): 240-244.
SUN L, WU W H, KE J, et al. Detection of contamination of railway catenary insulator based on visible light image[J]. Insulators and Surge Arresters, 2019(5): 240-244.
[14] 高嵩, 陆倚鹏, 王笑倩, 等. 基于深度学习的悬式瓷绝缘子红外图像识别方法[J]. 电力科学与技术学报, 2020, 35(5): 119-125.
GAO S, LU Y P, WANG X Q, et al. Infrared image recognition method of porcelain disc-suspended insulators based on deep learning technology[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 119-125.
[15] 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7446.
LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission line[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7446.
[16] 林刚, 王波, 彭辉, 等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218.
LIN G, WANG B, PENG H, et al. Improved Faster-RCNN based multi-target detection and localization of transmission line inspection images[J]. Electric Power Automation Equipment, 2019, 39(5): 213-218.
[17] 王卓, 王玉静, 王庆岩, 等. 基于协同深度学习的二阶段绝缘子故障检测方法[J]. 电工技术学报, 2021, 36(17): 3594-3604.
WANG Z, WANG Y J, WANG Q Y, et al. Two-stage insulator fault detection method based on collaborative deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3594-3604.
[18] 王建烨, 续欣莹, 谢刚, 等. 改进SSD模型的绝缘子自爆故障检测[J]. 现代电子技术, 2022, 45(14): 115-121.
WANG J Y, XU X Y, XIE G, et al. Insulators self-explosion fault detection based on improved SSD model[J]. Modern Electronics Technique, 2022, 45(14): 115-121.
[19] 罗潇, 於锋, 彭勇, 等. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制, 2022, 50(10): 132-139.
LUO X, YU F, PENG Y, et al. UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control, 2022, 50(10): 132-139.
[20] 王道累, 张世恒, 袁斌霞, 等. 基于改进YOLOv5的轻量化玻璃绝缘子自爆缺陷检测研究[J]. 高电压技术, 2023, 49(10): 4382-4390.
WANG D L, ZHANG S H, YUAN B X, et al. Research on self-explosion defect detection of lightweight glass insulators based on improved YOLOv5[J]. High Voltage Engineering, 2023, 49(10): 4382-4390.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[23] QYAN Y, ZHANG D, ZHANG L, et al. Centralized feature pyramid for object detection[J]. arXiv:2210.02093, 2022. |