[1] 刘宪权. 网络黑灰产上游犯罪的刑法规制[J]. 国家检察官学院学报, 2021, 29(1): 3-17.
LIU X Q. Criminal regulation on the upstream crimes of the cyber underground industry chain[J]. Journal of National Prosecutors College, 2021, 29(1): 3-17.
[2] HRIDOY S D, VISHAL R D, ADITYA A, et al. Detecting fake retweeters using Hawkesprocess and topic modeling[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2667-2678.
[3] HRIDOY S D, KARTIK A, TANMOY C. DECIFE: detecting collusive users involved in blackmarket following services on Twitter[C]//Proceedings of the 32nd ACM Conference on Hypertext and Social Media, 2021.
[4] 古倩. 基于特征向量构建的文本分类方法研究[D]. 西安: 西安理工大学, 2019.
GU Q. Research on text classification method based on feature vecgtor construction[D]. Xi’an: Xi’an University of Technology, 2019.
[5] 杨波. 新浪微博热点话题发现研究[D]. 乌鲁木齐: 新疆大学, 2019.
YANG B. Research on hot topic discovery of Sina microblog[D]. Urumqi: Xinjiang University, 2019.
[6] 易顺明, 易昊, 周国栋. 采用情感特征向量的Twitter情感分类方法研究[J]. 小型微型计算机系统, 2016, 37(11): 2454-2458.
YI S M, YI H, ZHOU G D. Twitter sentiment classification with sentimental feature vector[J]. Journal of Chinese Computer Systems, 2016, 37(11): 2454-2458.
[7] 胡馨月. Twitter事件检测中的语义和情感分析[D]. 成都: 电子科技大学, 2018.
HU X Y. Semantic and sentiment analysis in twitter event detection[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[8] 贺友程. 基于mBERT的东南亚小语种推特文本情感分析[J]. 电脑知识与技术, 2023, 19(1): 74-76.
HE Y C. Sentiment analysis of southeast Asian small language Twitter texts based on mBERT[J]. Computer Knowledge and Technology, 2023, 19(1): 74-76.
[9] 孙晓雨. 基于语义场景分析的文本表情分析方法研究[D]. 南京: 南京邮电大学, 2022.
SUN X Y. Research on text emoji analysis method based on semantic scene analysis[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022.
[10] ARORA U, DUTTA H S, JOSHIET B, et al. Analyzing and detecting collusiveusers involved in blackmarket retweeting activities[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(3): 1-24.
[11] MEHROTRA A, SARREDDY M, SINGH S. Detection of fake Twitter followers using graph centrality measures[C]//Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, 2016: 499-504.
[12] LEE K, MAHMUD J, CHEN J, et al. Who will retweet this? detecting strangers from twitter to retweet information[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-25.
[13] SHAH N, BEUTEL A, GALLAGHER B, et al. Spotting suspicious link behavior with fbox: an adversarial perspective[C]//Proceedings of the 2014 IEEE International Conference on Data Mining, 2014: 959-964.
[14] CRESCI S, PIETRO R D, PETROCCHI M, et al. A fake follower story: improving fake accounts detection on Twitter[R]. 2014.
[15] JIANG M, CUI P, BEUTEL A, et al. CatchSync: catching synchronized behavior in large directed graphs[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 941-950.
[16] KWAK H, CHUN H, MOON S. Fragile online relation-ship: a first look at unfollow dynamics in twitter[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2011: 1091-1100.
[17] ARORA U, PAKA W S, CHAKRABORTY T. Multitask learning for blackmarket tweet detection[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2019: 127-130.
[18] DUTTA H S, AGGARWAL K, CHAKRABORTY T. DECIFE: detecting collusive users involved in blackmarket following services on Twitter[C]//Proceedings of the 32nd ACM Conference on Hypertext and Social Media, 2021.
[19] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, 2014: 1746-1751.
[20] 刘浩. 侵犯公民个人信息罪的法益构造及其规范解释[J]. 环球法律评论, 2023, 45(3): 163-179.
LIU H. The legal interest structure of the crime of infringing on citizens’ personal information and its normative interpretation[J]. Global Law Review, 2023, 45(3): 163-179.
[21] 张巍. 涉网络犯罪相关行为刑法规制研究[D]. 上海: 华东政法大学, 2015.
ZHANG W. Research into criminal regulation of network relevant crimes[D]. Shanghai: East China University of Political Science and Law, 2015.
[22] 班艺源. 少捕慎诉慎押下“两卡”类帮信罪的司法治理[J]. 政法学刊, 2022, 39(6): 14-22.
BAN Y Y. On the judicial administration of “two cards” crime of assisting cybercrime under the background of less arrest and prudent prosecution and custody[J]. Journal of Political Science and Law, 2022, 39(6): 14-22.
[23] LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, 2016: 2873-2879.
[24] LAI S, XU L, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015: 2267-2273. |