[1] MELEK C G, BATTINI S?NMEZ E, VARLI S. Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: an exhaustive literature review[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108452.
[2] GINER J, KATIC D, KOVACS K, et al. A computer vision based approach to reduce system downtimes in an automated high-rack logistics warehouse[J]. Procedia CIRP, 2023, 118: 1078-1083.
[3] YAN J H, WANG Z P. YOLO V3 + VGG16-based automatic operations monitoring and analysis in a manufacturing workshop under Industry 4.0[J]. Journal of Manufacturing Systems, 2022, 63: 134-142.
[4] MIRBOD M, GHATARI A R, SAATI S, et al. Industrial parts change recognition model using machine vision, image processing in the framework of industrial information integration[J]. Journal of Industrial Information Integration, 2022, 26: 100277.
[5] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1566-1578.
YAN H N, LYU F, FENG Y A. Feature-level adaptive enhancement for UAV target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1566-1578.
[6] WANG T Y, HARDIN R G I, WARD J K, et al. A smart cotton module tracking and monitoring system for handling logistics and cover damage[J]. Computers and Electronics in Agriculture, 2022, 193: 106620.
[7] DI CAPUA M, CIARAMELLA A, DE PRISCO A. Machine learning and computer vision for the automation of processes in advanced logistics: the integrated logistic platform(ILP) 4.0[J]. Procedia Computer Science, 2023, 217: 326-338.
[8] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[9] 葛永杰, 王丽丹, 陈定喜, 等. 基于深度学习的工业视觉箱体字符识别与判断[J]. 计算机工程, 2022, 48(1): 296-304.
GE Y J, WANG L D, CHEN D X, et al. Character recognition and judgment of industrial vision box based on deep learning[J]. Computer Engineering, 2022, 48(1): 296-304.
[10] 高磊, 徐洪, 汪昌平. 基于改进Yolo v3的H型钢喷号识别系统研究[J]. 冶金动力, 2024, 43(3): 63-66.
GAO L, XU H, WANG C P. Research on H-beam spray number identification system based on improved Yolo v3[J]. Metallurgical Power, 2024, 43(3): 63-66.
[11] 马宏伟. 平板工件字符编码视觉识别技术研究[D]. 哈尔滨: 哈尔滨商业大学, 2024.
MA H W. Research on visual recognition technology for character encoding of flat workpieces[D]. Harbin: Harbin University of Commerce, 2024.
[12] ZHANG X S, WANG Y. Industrial character recognition based on improved CRNN in complex environments[J]. Computers in Industry, 2022, 142: 103732.
[13] 周玮, 门耀华, 辛立刚. 基于机器视觉的柔性包装袋喷码缺陷检测研究[J]. 包装工程, 2022, 43(9): 249-256.
ZHOU W, MEN Y H, XIN L G. Inspection of coding defects in flexible packaging bags based on machine vision[J]. Packaging Engineering, 2022, 43(9): 249-256.
[14] 劳昶皓. 基于深度学习的喷码检测识别系统研究[D]. 桂林: 广西师范大学, 2023.
LAO C H. Research on coding detection and recognition system based on deep learning[D]. Guilin: Guangxi Normal University, 2023.
[15] 李帆, 胡维平, 刘北北, 等. 基于NVIDIA TX2的喷码字符检测算法[J]. 计算机工程与应用, 2022, 58(13): 210-216.
LI F, HU W P, LIU B B, et al. NVIDIA TX2-based inkjet character detection algorithm[J]. Computer Engineering and Applications, 2022, 58(13): 210-216.
[16] 宋存利, 柴伟琴, 张雪松. 基于改进YOLO v5算法的道路小目标检测[J]. 系统工程与电子技术, 2024, 46(10): 3271-3278.
SONG C L, CHAI W Q, ZHANG X S. Road small target detection based on improved YOLO v5 algorithm[J]. Systems Engineering and Electronics, 2024, 46(10): 3271-3278.
[17] LI X M, WEI Y K, LI J H, et al. Improved YOLOv7 algorithm for small object detection in unmanned aerial vehicle image scenarios[J]. Applied Sciences, 2024, 14(4): 1664.
[18] 王呈, 王炀, 荣英佼. 面向配电柜字符识别的YOLOv7-MSBP目标定位算法[J]. 计算机应用, 2024, 44(10): 3191-3199.
WANG C, WANG Y, RONG Y J. YOLOv7-MSBP target location algorithm for character recognition of power distribution cabinet[J]. Journal of Computer Applications, 2024, 44(10): 3191-3199.
[19] WANG F, WANG H Y, QIN Z Y, et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access, 2023, 11: 116534-116544.
[20] WANG H, HAN D Z, CUI M M, et al. NAS-YOLOX: a SAR ship detection using neural architecture search and multi-scale attention[J]. Connection Science, 2023, 35(1): 1-32.
[21] XU W Y, CUI C, JI Y C, et al. YOLOv8-MPEB small target detection algorithm based on UAV images[J]. Heliyon, 2024, 10(8): e29501.
[22] 王传云, 苏阳, 王琳霖, 等. 面向反制无人机集群的多目标连续鲁棒跟踪算法[J]. 航空学报, 2024, 45(7): 261-274.
WANG C Y, SU Y, WANG L L, et al. Multi-object continuous robust tracking algorithm for anti-UAV swarm[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 261-274.
[23] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[24] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[25] VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024: 1-6.
[26] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[27] CHEN Z X, HE Z W, LU Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002-1015.
[28] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189.
[29] XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211. 15444, 2022.
[30] HSU P H, LEE P J, BUI T A, et al. YOLO-SPD: tiny objects localization on remote sensing based on You only look once and space-to-depth convolution[C]//Proceedings of the 2024 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2024: 1-3.
[31] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[32] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024. |