[1] ZHANG J R, WEI X, ZHANG L X, et al. YOLO v7-ECA-PConv-NWD detects defective insulators on transmission lines[J]. Electronics, 2023, 12(18): 3969-3978.
[2] SHENG W S, YU X F, LIN J Y, et al. Faster RCNN target detection algorithm integrating CBAM and FPN[J]. Applied Sciences, 2023, 13(12): 6913-6921.
[3] XIANG W B, SONG Z Y, ZHANG G X, et al. Birds detection in natural scenes based on improved faster RCNN[J]. Applied Sciences, 2022, 12(12): 6094-6102.
[4] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[5] HOU J L, CHE Y H, FANG Y R, et al. Early bruise detection in apple based on an improved faster RCNN model[J]. Horticulturae, 2024, 10(1): 100-107.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] TAN H C, ZHOU J, TIAN S J, et al. SFE-SSD: shallow feature enhancement SSD for small object detection[J]. Journal of Mathematical Research with Applications, 2019, 39(6): 733-744.
[9] MA L, LIU Y, ZHANG X L, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177.
[10] ZHOU M, WANG J, LI B. ARG-mask RCNN: an infrared insulator fault-detection network based on improved mask RCNN[J]. Sensors, 2022, 22(13): 4720-7433.
[11] ZHANG D, LI J J, XIONG L, et al. Cycle-consistent domain adaptive faster RCNN[J]. IEEE Access, 2019, 7: 123903-123911.
[12] HOU J W, YANG C, HE Y H, et al. Detecting diseases in apple tree leaves using FPN-ISResNet-Faster RCNN[J]. European Journal of Remote Sensing, 2023, 56(1): 623-631.
[13] 赵佰亭, 程瑞丰, 贾晓芬. 融合多尺度特征的YOLOv8裂缝缺陷检测算法[J]. 计算机工程与应用, 2024, 60(22): 261-270.
ZHAO B T, CHENG R F, JIA X F. YOLOv8 crack defect detection algorithm based on multi-scale features[J]. Computer Engineering and Applications, 2024, 60(22): 261-270.
[14] LIU W R, WANG S, GAO X J, et al. A tomato recognition and rapid sorting system based on improved YOLOv10[J]. Machines, 2024, 12(10): 689-696.
[15] QIU X Y, CHEN Y J, CAI W H, et al. LD-YOLOv10: a lightweight target detection algorithm for drone scenarios based on YOLOv10[J]. Electronics, 2024, 13(16): 3269-3276.
[16] SONG Q, YAO B D, XUE Y L, et al. MS-YOLO: a lightweight and high-precision YOLO model for drowning detection[J]. Sensors, 2024, 24(21): 6955-6964.
[17] 姚景丽, 程光, 万飞, 等. 改进YOLOv8的轻量化轴承缺陷检测算法[J]. 计算机工程与应用, 2024, 60(21): 205-214.
YAO J L, CHENG G, WAN F, et al. Improved lightweight bearing defect detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(21): 205-214.
[18] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 51-84.
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 51-84.
[19] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[20] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[21] CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043.
[22] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 132-135.
[23] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
[24] WANG X L, XIAO T T, JIANG Y N, et al. Repulsion loss: detecting pedestrians in a crowd[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7774-7783.
[25] WEI J F, NI L Y, LUO L, et al. GFS-YOLO11: a maturity detection model for multi-variety tomato[J]. Agronomy, 2024, 14(11): 2644.
[26] 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214.
LI L, JIN Z X, YU X L, et al. Road vehicle and pedestrian detection based on YOLOv9 for haar wavelet downsampling[J]. Computer Engineering and Applications, 2024, 60(20): 207-214.
[27] LIN Z, YUN B, ZHENG Y. LD-YOLO: a lightweight dynamic forest fire and smoke detection model with Dysample and spatial context awareness module[J]. Forests, 2024, 15(9): 1630-1642.
[28] LI Y G, LI Q, PAN J, et al. SOD-YOLO: small-object-detection algorithm based on improved YOLOv8 for UAV images[J]. Remote Sensing. 2024, 16(16): 3057-3068.
[29] WANG X Q, GAO H B, JIA Z M, et al. BL-YOLOv8: an improved road defect detection model based on YOLOv8[J]. Sensors, 2023, 23(20): 8361-9373.
[30] WU T Y, DONG Y K. YOLO-SE: improved YOLOv8 for remote sensing object detection and recognition[J]. Applied Sciences, 2023, 13(24): 12977-12986.
[31] MEI J H, ZHU W Q. BGF-YOLOv10: small object detection algorithm from unmanned aerial vehicle perspective based on improved YOLOv10[J]. Sensors, 2024, 24(21): 6911-6922. |