计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 344-354.DOI: 10.3778/j.issn.1002-8331.2308-0085

• 工程与应用 • 上一篇    下一篇

启发式搜索的多智能体异速轨迹规划

鲁宇,匡金骏,肖峣,龚建伟   

  1. 1.重庆长安望江工业集团有限公司,重庆 401120
    2.北京理工大学 机械与车辆学院,北京 100081
  • 出版日期:2025-01-15 发布日期:2025-01-15

Heuristic Search-Based Multi-Agent Heterogeneous Speed Path Planning

LU Yu, KUANG Jinjun, XIAO Yao, GONG Jianwei   

  1. 1.Chongqing Chang’an Wangjiang Industrial Group Co. ,LTD., Chongqing 401120, China
    2.Intelligent Vehicle Research Center, Beijing Institute of Technology, Beijing 100081, China
  • Online:2025-01-15 Published:2025-01-15

摘要: 在多智能体系统研究中,多智能体路径规划(multi-agent path finding,MAPF)是一个核心难题,其目标是为各个智能体规定独立路径,确保智能体在移动过程中不发生碰撞。这是一个NP难题,亟须高效解决算法。创新性地提出了一种多智能体路径规划算法——启发式导向冲突搜索(heuristic guided conflict-based search,HG-CBS),以解决复杂的MAPF场景,如智能体移动速度不同或各条边的道路长度不同。为优化HG-CBS算法,构建了三种独特的启发式计算方法:(1)加权求和法,以所有启发式的加权总和作为最终启发式;(2)帕累托集合法,构建一个帕累托集并从中选择节点;(3)交替法,在搜索迭代过程中交替使用各种启发式。实验结果显示,相比于传统方法,带有启发值的HG-CBS在成功率、运行时间及扩展节点数量等关键性能指标上均表现更优。例如,在包含16个智能体的复杂场景下,HG-CBS-h3(交替法)将运行时间缩短了89%,将拓展节点的数目减少了95%。此外,随着场景复杂度的提升,HG-CBS-h3的性能优势更加明显。这些结果证明了HG-CBS算法的有效性和高效性,对多智能体轨迹规划问题具有显著的理论和应用价值。

关键词: 多智能体路径规划, 启发式导向冲突搜索, 启发式搜索, 帕累托集

Abstract: Multi-agent path finding (MAPF) is a core challenge in multi-agent systems research, aiming to assign independent paths to each agent to avoid collisions during movement. As an NP-hard problem, it is highly sought after to develop efficient algorithms. This paper proposes an innovative multi-agent path planning algorithm called heuristic guided conflict-based search (HG-CBS), designed to address complex MAPF scenarios such as heterogeneous agent speeds and varying edge lengths. To optimize HG-CBS, the paper develops three unique heuristic computation methods: (1) weighted sum method, using the weighted sum of all heuristics as the final heuristic; (2) Pareto set method, constructing a Pareto set and selecting nodes from it; (3) alternating method, alternating between various heuristics during search iterations. Experimental results demonstrate that HG-CBS with heuristics outperforms conventional methods in terms of success rate, runtime, and number of expanded nodes. For instance, in a complex scenario with 16 agents, HG-CBS-h3 (alternating method) reduces the runtime by 89% and the number of expanded nodes by 95%. Moreover, the performance advantage of HG-CBS-h3 becomes even more prominent as the complexity of the scenario increases. These findings validate the effectiveness and efficiency of the HG-CBS algorithm, highlighting its significant theoretical and practical implications for multi-agent trajectory planning.

Key words: multi-agent path finding, heuristic guided conflict-based search, heuristic search, Pareto set