计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 355-362.DOI: 10.3778/j.issn.1002-8331.2308-0395

• 工程与应用 • 上一篇    下一篇

数据与模型双驱动的集装箱码头集卡周转时间预测

薛桐,靳志宏,徐世达   

  1. 大连海事大学 交通运输工程学院,辽宁 大连 116000
  • 出版日期:2025-01-15 发布日期:2025-01-15

Prediction of Container Terminal Truck Turnaround Time Driven by Data and Model

XUE Tong, JIN Zhihong, XU Shida   

  1. School of Transportation Engineering, Dalian Maritime University, Dalian, Liaoning 116000, China
  • Online:2025-01-15 Published:2025-01-15

摘要: 集卡预约是缓解集装箱码头及其周边区域拥堵、实现港口内部作业机械均衡生产的有效手段。针对产业界对外集卡分时段在港周转时间预测的客观需求,提出了基于模型与数据双驱动的集卡在港周转时间预测方法,将在港周转时间预测转化为抵港车辆数量预测和港内周转时间测算两个子问题,抵港车辆数量预测部分构建了基于数据驱动的双层LSTM(长短期记忆递归神经网络)模型,港内周转时间测算部分则采用排队模型驱动方法。通过与历史实际数据集进行比较分析,实验结果表明:相较于传统单纯数据驱动或单纯模型驱动方法,所提出的数据与模型双驱动方法能够有效地预测码头集卡周转时间,且相较单纯数据驱动或单纯模型驱动的方法可降低40%以上的均方根误差(RMSE)和平均百分比误差(MAPE),更精确的集卡周转时间预测可为码头制定运营计划提供有利支持。

关键词: 集卡预约系统, 集装箱码头, 周转时间, 数据驱动, LSTM神经网络, 排队论

Abstract: Truck booking is an effective means to alleviate congestion in container terminals and their surrounding areas, and achieve balanced production of internal operating machinery in ports. In response to the objective demand of the industry for predicting the turnaround time of container trucks in ports in different time periods, it proposes a model and data driven method for predicting the turnaround time of container trucks in ports. The method transforms the turnaround time prediction into two sub problems: predicting the number of arriving vehicles and calculating the turnaround time inside the port. Among them, a data-driven double-layer LSTM (long short term memory) model is constructed for the prediction of the number of arriving vehicles; the calculation of turnover time in the port adopts a queuing model driven method. By comparing and analyzing with historical actual datasets, the experimental results show that compared to the traditional single data driven method or single model driven method, the data and model dual driven method proposed in this paper can effectively predict the turnaround time of terminal trucks, and can reduce root mean square error (RMSE) and mean absolute percentage error (MAPE) by more than 40% compared to the single data driven method or single model driven method. A more accurate prediction of truck turnaround time can provide favorable support for terminal operation planning.

Key words: truck appointment system, container terminal, turnaround time, data driven, LSTM neural network, queuing theory