[1] 赵志宏, 郝子晔. 改进YOLOv8的航拍小目标检测方法: CRP-YOLO[J]. 计算机工程与应用, 2024, 60(13): 209-218.
ZHAO Z H, HAO Z Y. Improved YOLOv8 aerial small target detection method: CRP-YOLO[J]. Computer Engineering and Applications, 2024, 60(13): 209-218.
[2] 初秀民, 严新平, 陈先桥. 路面破损图像二值化方法研究[J]. 计算机工程与应用, 2008, 44(28): 161-165.
CHU X M, YAN X P, CHEN X Q. Study of pavement surface distress image binarization[J]. Computer Engineering and Applications, 2008, 44(28): 161-165.
[3] 翟军治, 孙朝云, 裴莉莉, 等. 多尺度特征增强的路面裂缝检测方法[J]. 交通运输工程学报, 2023, 23(1): 291-308.
ZHAI J Z, SUN Z Y, PEI L L, et al. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308.
[4] 陈涵深, 姚明海, 瞿心昱. 基于U型全卷积神经网络的路面裂缝检测[J]. 光电工程, 2020, 47(12): 67-77.
CHEN H S, YAO M H, QU X Y. Pavement crack detection based on the U-shaped fully convolutional neural network[J]. Opto-Electron Eng, 2020, 47(12): 67-77.
[5] 夏晓华, 苏建功, 王耀耀, 等. 基于DeepLabv3+的轻量化路面裂缝检测模型[J]. 激光与光电子学进展, 2024, 61(8): 172-181.
XIA X H, SU J G, WANG Y Y, et al. Lightweight pavement crack detection model based on DeepLabv3+[J]. Laser and Optoelectronics Progress, 2024, 61(8): 172-181.
[6] 肖力炀, 李伟, 袁博, 等. 一种基于改进实例分割模型的路面裂缝检测方法[J]. 武汉大学学报 (信息科学版), 2023, 48(5): 765-776.
XIAO L Y, LI W, YUAN B, et al. A pavement crack identification method based on improved instance segmentation model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 765-776.
[7] 何铁军, 李华恩. 基于改进YOLOv5的路面病害检测模型[J]. 土木工程学报, 2024, 57(2): 96-106.
HE T J, LI H E. The pavement damage detection model based on improved YOLOv5[J]. China Civil Engineering Journal, 2024, 57(2): 96-106.
[8] INAM H , ISLAM N U, AKRAM M U, et al. Smart and automated infrastructure management: a deep learning approach for crack detection in bridge images[J]. Sustainability, 2023, 15(3): 1866-1866.
[9] 李泽伟, 杨永清, 廖曼, 等. 基于计算机视觉与混合测量技术的结构裂缝识别方法[J/OL]. 西南交通大学学报: 1-12[2024-07?16].http://kns.cnki.net/kcms/detail/51.1277.U.20240712.
1344.002.html.
LI Z W, YANG Y Q, LIAO M, et al. Structural crack detection based on computer vision and hybrid measurement technology[J/OL]. Journal of Southwest Jiaotong University: 1-12[2024-07-16]. http://kns.cnki.net/kcms/detail/51.1277.U.
20240712.1344.002.html.
[10] WANG X, GAO H, JIA Z, et al. BL-YOLOv8: an improved road defect detection model based on YOLOv8[J]. Sensors, 2023, 23(20): 8361.
[11] XIONG C, ZAYED T, ABDELKADER E M. A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks[J]. Construction and Building Materials, 2024, 414: 135025.
[12] 王雪秋, 高焕兵, 郏泽萌. 改进YOLOv8的道路缺陷检测算法[J]. 计算机工程与应用, 2024, 60(17): 179-190.
WANG X Q, GAO H B, JIA Z M. Improved road defect detection algorithm based on YOLOv8[J]. Computer Engineering and Applications, 2024, 60(17): 179-190.
[13] 胥铁峰, 黄河, 张红民, 等. 基于改进YOLOv8的轻量化道路病害检测方法[J]. 计算机工程与应用, 2024, 60(14): 175-186.
XU T F, HUANG H, ZHANG H M, et al. Lightweight road damage detection method based on improved YOLOv8[J]. Computer Engineering and Applications, 2024, 60(14): 175-186.
[14] QIU Q W, DENVID L. Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle (UAV) images[J]. Automation in Construction, 2023, 147: 104745.
[15] WANG G , CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[16] 程换新, 乔庆元, 骆晓玲, 等. 基于改进YOLOv8的无人机航拍图像目标检测算法[J]. 无线电工程, 2024, 54(4): 871-881.
CHENG H X, QIAO Q Y, LUO X L, et al. Object detection algorithm for UAV aerial image improved by YOLOv8[J]. Radio Engineering , 2024, 54(4): 871-881.
[17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[18] FENG C, ZHONG Y, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 3490-3499.
[19] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174.
LI S, SHI T, JING F K. Improved road damage detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[20] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[21] LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection[J]. arXiv:2303. 09030, 2023.
[22] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[23] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[24] YAN H, ZHANG J. UAV-PDD2023: a benchmark dataset for pavement distress detection based on UAV images[J]. Data in Brief, 2023, 51: 109692.
[25] HONG Z H, YANG F, PAN H, et al. Highway crack segmentation from unmanned aerial vehicle images using deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. |