[1] SHI Y, CHEN Z, QI Z, et al. A novel clustering-based image segmentation via density peaks algorithm with mid-level feature[J]. Neural Computing and Applications, 2017, 28(1): 29-39.
[2] GOMEZ-SANCHEZ G, DELGADO-SERRANO L, CARRERA D, et al. Clustering and graph mining techniques for classification of complex structural variations in cancer genomes[J]. Scientific Reports, 2022, 12(1): 3244.
[3] CARCILLO F, BORGNE Y L, CAELEN O, et al. Combining unsupervised and supervised learning in credit card fraud detection[J]. Information Sciences, 2021, 557(1): 317-331.
[4] ZHU E Z, MA R H. An effective partitional clustering algorithm based on new clustering validity index[J]. Applied Soft Computing, 2018, 71: 608-621.
[5] LU J C, KANG Z, WANG B Y, et al. Multi-view subspace clustering via partition fusion[J]. Information Sciences, 2021, 560: 410-423.
[6] CABEZAS L M C, IZBICKI R, STERN R B. Hierarchical clustering: visualization, feature importance and model selection[J]. Applied Soft Computing, 2023, 141: 110303.
[7] XU J, WANG G, DENG W. DenPEHC: density peak based efficient hierarchical clustering[J]. Information Sciences, 2016, 373: 200-218.
[8] HIRECHE C, DRIAS H, MOULAI H. Grid based clustering for satisfiability solving[J]. Applied Soft Computing, 2020, 88: 106069.
[9] CHATTERJEE A, MUKHERJEEJ, AIKAT S, et al. Semi-supervised classification of paddy fields from dual polarized synthetic aperture radar images using deep learning[J]. International Journal of Remote Sensing, 2021, 42(5): 1867-1892.
[10] EZUGWU A E, IKOTUN A M, OYELADE O, et al. A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects[J]. Engineering Applications of Artificial Intelligence, 2022, 110: 104743.
[11] ESTER M, KRIEGEL H P, SANDER J, et al. A density based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Aug 2-4, 1996. Menlo Park: AAAI, 1996: 226-231.
[12] CAMPELLO R J G B, MOULAVI D, SANDER J. Density-based clustering based on hierarchical density estimates[C]//Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 2013: 160-172.
[13] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[14] ZUO W D, HOU X M. An improved probability propagation algorithm for density peak clustering based on natural nearest neighborhood[J]. Array, 2022, 15: 100232.
[15] ABBAS M, EL-ZOGHABI A, SHOUKRY A. DenMune: density peak based clustering using mutual nearest neighbors[J]. Pattern Recognition, 2021, 109: 107589.
[16] ABBAS M, EL-ZOGHABI A, SHOUKRY A. PyMune: a Python package for complex clusters detection[J]. Software Impacts, 2023, 17: 100564.
[17] TAO Y, YIU M L, MAMOULIS N. Reverse nearest neighbor search in metric spaces[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9): 1239-1252.
[18] BRITO M R, CHAVEZ E L, QUIROZ A J, et al. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection[J]. Statistics & Probability Letters, 1997, 35(1): 33-42.
[19] HU Z, BHATNAGAR R. Clustering algorithm based on mutual K-nearest neighbor relationships[J]. Statistical Analysis and Data Mining, 2012, 5(2): 100-113.
[20] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11: 2837-2854.
[21] HUBERT L, ARABIE P. Comparing partitions[J]. Journal of Classification, 1985, 2(1): 193-218.
[22] FOWLKES E, MALLOWS C. A method for comparing two hierarchical clusterings[J]. Journal of the American Statistical Association, 1983, 78(383): 553-569.
[23] QADDOURA R, FARIS H, ALJARAH I. An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 675-714.
[24] FENG C, TAGUCHI Y, KAMAT V R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, May 31-Jun 7, 2014. Piscataway: IEEE, 2014: 6218-6225.
[25] LIU R, WANG H, YU X. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226.
[26] LAURENS V D M. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2015, 15(1): 3221-3245. |