[1] ORGANIZATION W H. Global status report on road safety 2018[Z]. World Health Organization, 2019.
[2] WARANUSAST R, BUNDON N, TIMTONG V, et al. Machine vision techniques for motorcycle safety helmet detection[C]//Proceedings of the 28th International Conference on Image and Vision Computing, 2013: 35-40.
[3] SILVA R, AIRES K, SANTOS T, et al. Automatic detection of motorcyclists without helmet[C]//Proceedings of the 2013 XXXIX Latin American Computing Conference, 2013: 1-7.
[4] 张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[9] 谢溥轩, 崔金荣, 赵敏. 基于改进YOLOv5的电动车头盔佩戴检测算法[J]. 计算机科学, 2023, 50(1): 420-425.
XIE P X, CUI J R, ZHAO M. Electiric bike helment wearing detection alogrithm based on improved YOLOv5[J]. Computer Science, 2023, 50(1): 420-425.
[10] 张鑫, 周顺勇, 李思诚, 等. 基于注意力机制和跨尺度特征融合的摩托车头盔检测算法[J]. 电子测量技术, 2023, 46(12): 134-142.
ZHANG X, ZHOU S Y, LI S C, et al. Motorcycle helmet detection algorithm based on attention mechanism and cross-scale feature fusion[J]. Electronic Measurement Technology, 2023, 46(12): 134-142.
[11] HUANG B, WU S, XIANG X, et al. An improved YOLOv5s-based helmet recognition method for electric bikes[J]. Applied Sciences, 2023, 13(15): 8759.
[12] SHABESTARI Z B, HOSSEININAVEH A, REMONDINO F. Motorcycle detection and collision warning using monocular images from a vehicle[J]. Remote Sensing, 2023, 15(23): 5548.
[13] CHEN S, LAN J, LIU H, et al. Helmet wearing detection of motorcycle drivers using deep learning network with residual transformer-spatial attention[J]. Drones, 2022, 6(12): 415.
[14] JIA W, XU S, LIANG Z, et al. Real‐time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021, 15(14): 3623-3637.
[15] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[16] XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
[17] ENGELMAYER V, GEORGIEV D G, VELI?KOVI? P. Parallel algorithms align with neural execution[C]//Proceedings of the Learning on Graphs Conference, 2023: 31.
[18] WEI J, ZHANG X, JI Z, et al. Deploying and scaling distributed parallel deep neural networks on the Tianhe-3 prototype system[J]. Scientific Reports, 2021, 11(1): 20244.
[19] WU J, SUN Y. Evolving deep parallel neural networks for multi-task learning[C]//Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, 2021: 517-531.
[20] DAI Y, WANG J, LI J, et al. PDBNet: parallel dual branch network for real-time semantic segmentation[J]. International Journal of Control, Automation and Systems, 2022, 20(8): 2702-2711.
[21] WANG Y, ERGEN T, PILANCI M. Parallel deep neural networks have zero duality gap[J]. arXiv:2110.06482, 2021.
[22] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[23] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[24] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[25] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[26] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv:2004.
10934, 2020.
[27] WU W, LIU H, LI L, et al. Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image[J]. PloS one, 2021, 16(10): 259283.
[28] WANG C, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[29] WANG C, YEH I, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv: 2402. 13616, 2024.
[30] ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 260-275.
[31] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020: 213-229.
[32] ZHAO Y, LV W, XU S, et al. Detrs beat YOLOs on real-time object detection[J]. arXiv: 2304. 08069, 2023. |