[1] 张瑶, 卢焕章, 张路平, 等. 基于深度学习的视觉多目标跟踪算法综述 [J]. 计算机工程与应用, 2021, 57(13): 55-66.
ZHANG Y, LU H Z, ZHANG L P. Overview of visual multi-object tracking algorithms with deep learning[J]. Computer Engineering and Applications, 2021, 57(13): 55-66.
[2] RAKAI L, SONG H, SUN S, et al. Data association in multiple object tracking: a survey of recent techniques[J]. Expert Systems with Applications, 2022, 192: 116300.
[3] XU Y, BAN Y, DELORME G, et al. TransCenter: Transformers with dense representations for multiple-object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(6): 7820-7835.
[4] DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: a benchmark for multi object tracking in crowded scenes[J]. arXiv:2003.09003, 2020.
[5] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), 2017.
[6] KALMAN R E. Contributions to the theory of optimal control[J]. Contributions to the Theory of Optimal Control, 1960, 5(2): 102-119.
[7] ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[C]//Proceedings of the 17th European Conference on Computer Vision(ECCV 2022), 2022.
[8] SUN P, CAO J, JIANG Y, et al. DanceTrack: multi-object tracking in uniform appearance and diverse motion[C]//Proceedings of the he IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[9] YU F, CHEN H, WANG X, et al. BDD100k: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[11] WANG W, XIE E, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
[12] KUHN H W. The Hungarian method for the assignment problem [J]. Naval Research Logistics (NRL), 2005, 52(1): 7-21.
[13] ZHOU X, WANG D, KR?HENBüHL P. Objects as points [J]. arXiv:1904.07850, 2019.
[14] TIAN Z, SHEN C, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1922-1933.
[15] SI G, ZHOU F, ZHANG Z, et al. Tracking multiple zebrafish larvae using YOLOv5 and deepsort[C]//Proceedings of the 2022 8th International Conference on Automation, Robotics and Applications (ICARA), 2022.
[16] ZENG F, DONG B, ZHANG Y, et al. MOTR: end-to-end multiple-object tracking with transformer[C]//Proceedings of the 17th European Conference on Computer Vision(ECCV 2022), 2022.
[17] SUN S, AKHTAR N, SONG H, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104-119.
[18] DU Y, ZHAO Z, SONG Y, et al. StrongSORT: make deepsort great again[J]. IEEE Transactions on Multimedia, 2023,25:8725-8737.
[19] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[J]. arXiv:2206.14651, 2022.
[20] STADLER D, BEYERER J. An improved association pipeline for multi-person tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
[21] LOUIZOS C, WELLING M, KINGMA D P. Learning sparse neural networks through L0 regularization [J]. arXiv:1712.01312, 2017.
[22] HE L, LIAO X, LIU W, et al. Fastreid: a pytorch toolbox for general instance re-identification[C]//Proceedings of the 31st ACM International Conference on Multimedia, 2023: 9664-9667.
[23] LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
[24] ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split-attention networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[25] LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129: 548-578.
[26] PAN Z, ZHUANG B, HE H, et al. Less is more: pay less attention in vision transformers[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
[27] PANG J, QIU L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
[28] YAN B, JIANG Y, SUN P, et al. Towards grand unification of object tracking[C]//Proceedings of the European Conference on Computer Vision, 2022.
[29] ZHOU X, KOLTUN V, KR?HENBüHL P. Tracking objects as points[C]//Proceedings of the 16th European Conference on Computer Vision(ECCV 2020), 2020.
[30] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[31] SUN P, CAO J, JIANG Y, et al. TransTrack: multiple object tracking with transformer [J]. arXiv:2012.15460, 2020. |