[1] 张瑶, 卢焕章, 张路平, 等. 基于深度学习的视觉多目标跟踪算法综述[J]. 计算机工程与应用, 2021, 57(13): 55-66.
ZHANG Y, LU H Z, ZHANG L P, et al. Overview of visual multi-object tracking algorithms with deep learning[J]. Computer Engineering and Applications, 2021, 57(13): 55-66.
[2] 方岚, 于凤芹. 自适应在线判别外观学习的分层关联多目标跟踪[J]. 中国图象图形学报, 2020, 25(4): 708-720.
FANG L, YU F Q. Multi-object tracking based on adaptive online discriminative appearance learning and hierarchical association[J]. Journal of Image and Graphics, 2020, 25(4): 708-720.
[3] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the IEEE International Conference on Image Processing, Phoenix, September 25-28, 2016. Piscataway, NJ: IEEE Press, 2016: 3464-3468.
[4] 罗大鹏, 杜国庆, 曾志鹏, 等. 基于少量样本学习的多目标检测跟踪方法[J]. 电子学报, 2021, 49(1): 183-191.
LUO D P, DU G Q, ZENG Z P, et al. Multi-object detection and tracking based on few-shot learning[J]. Acta Electronica Sinica, 2021, 49(1): 183-191.
[5] YIN J B, WANG W G, MENG Q H, et al. A unified object motion and affinity model for online multi-object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, June 16-18, 2020. Piscataway, NJ: IEEE Press, 2020: 6767-6776.
[6] LIANG C, ZHANG Z P, ZHOU X, et al. Rethinking the competition between detection and ReID in multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 31(7): 3182-3196.
[7] SUN P, CAO J K, JIANG Y, et al. TransTrack: multiple object tracking with transformer[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, June 16-18, 2020. Piscataway, NJ: IEEE Press, 2020: 1-10.
[8] XU Y H, BAN Y T, DELORME G, et al. TransCenter: transformers with dense queries for multiple-object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kuala Lumpur, June 19-25, 2021. Piscataway, NJ: IEEE Press, 2021:1-16.
[9] WANG G A, SONG M L, HWANG J N. Recent advances in embedding methods for multi-object tracking: a survey[EB/OL]. (2022-05-22)[2022-11-23]. https://arxiv.org/abs/2205.10766.
[10] MA C, YANG F, LI Y, et al. Deep human-interaction and association by graph-based learning for multiple object tracking in the wild[J]. International Journal of Computer Vision, 2021, 129(6): 1993-2010.
[11] 刘彦, 秦品乐, 曾建朝. 基于YOLOv3与分层数据关联的多目标跟踪算法[J]. 计算机科学, 2021, 48(S2): 370-375.
LIU Y, QIN P L, ZENG J C. Multi-object tracking algorithm based on YOLOv3 and hierarchical data association[J]. Computer Science, 2021, 48(S2): 370-375.
[12] 侯建华, 张国帅, 项俊. 基于深度学习的多目标跟踪关联模型设计[J]. 自动化学报, 2020, 46(12): 2690-2700.
HOU J H, ZHANG G S, XIANG J. Designing affinity model for multiple object tracking based on deep learning[J]. Acta Automatica Sinica, 2020, 46(12): 2690-2700.
[13] YU E, LI Z L, HAN S D, et al. RelationTrack: relation-aware multiple object tracking with decoupled representation[J/OL]. IEEE Transactions on Multimedia (2022-02-10)[2022-11-23].https://ieeexplore.ieee.org/document/9709649.
[14] BERGMANN P, MEINHARDT T, LEAL T L. Tracking without bells and whistles[C]//Proceedings of the IEEE International Conference on Computer Vision, Seoul, October 27-November 2, 2019. Piscataway, NJ: IEEE Press, 2019: 941-951.
[15] LIU Q K, CHU Q, LIU B, et al. GSM: graph similarity model for multi-object tracking[C]//Proceedings of the International Joint Conference on Artificial Intelligence, January 11-13, 2020. San Mateo: Morgan Kaufmann, 2020: 530-536.
[16] SADAT S F, SADEGH A M, SALZMANN M, et al. ArTIST: autoregressive trajectory inpainting and scoring for tracking [EB/OL]. (2020-04-16) [2022-11-23]. https://arxiv.org/abs/2004.07482.
[17] ZHOU X Y, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C]//Proceedings of the IEEE European Conference on Computer Vision, August 23-28, 2020. Piscataway, NJ: IEEE Press, 2020: 474-490.
[18] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, June 26-July 1, 2016. Piscataway, NJ: IEEE Press, 2016: 770-778.
[20] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hawaii, July 21-26, 2017. Piscataway, NJ: IEEE Press, 2017: 936-944.
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the IEEE European Conference on Computer Vision, Zurich, September 5-12, 2014. Berlin: Springer, 2014: 740-755.
[22] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the CLEAR MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008(1): 1-10.
[23] XU J R, CAO Y, ZHANG Z, et al. Spatial-temporal relation networks for multi-object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, Seoul, October 27-November 2, 2019. Piscataway, NJ: IEEE Press, 2019: 3987-3997.
[24] XU Y H, OSEP A, BAN Y T, et al. How to train your deep multi-object tracker[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, June 16-18, 2020. Piscataway, NJ: IEEE Press, 2020: 6786-6795.
[25] KIM C H, LI F X, MAZEN A, et al. Discriminative appearance modeling with multi-track pooling for real-time multi-object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, Montreal, October 11-18, 2021. Piscataway, NJ: IEEE Press, 2021: 9548-9557.
[26] GUO S, WANG J Y, WANG X C, et al. Online multiple object tracking with cross-task synergy[C]//Proceedings of the IEEE International Conference on Computer Vision, June 19-25, 2021. Piscataway, NJ: IEEE Press, 2021, 8132-8141.
[27] MA C, YANG F, LI Y, et al. Deep trajectory post-processing and position projection for single & multiple camera multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(12): 3255-3278.
[28] YANG J M, GE H W, YANG J L, et al. Online multi-object tracking using multi-function integration and tracking simulation training[J]. Applied Intelligence, 2022, 52(2): 1268-1288.
[29] GAO T Z, PAN H H, WANG Z D, et al. A CRF-based framework for tracklet inactivation in online multi-object tracking[J]. IEEE Transactions on Multimedia, 2022, 24: 995-1007.
[30] SUN S J, AKHTAR N, SONG H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104-119.
[31] WANG G A, WANG Y Z, GU R S, et al. Split and connect: a universal tracklet booster for multi-object tracking[J/OL]. IEEE Transactions on Multimedia (2022-01-06)[2022-11-23]. https://ieeexplore. ieee. org/document/9672670.
[32] PAPAKIS I, SARKAR A, KARPATNE A. GCNNMatch: graph convolutional neural networks for multi-object tracking via sinkhorn normalization[EB/OL]. (2021-04-16)[2022-11-23]. https://arxiv.org/abs/2010.00067.
[33] URBANN O, BREDTMANN O, OTTEN M, et al. Online and real-time tracking in a surveillance scenario[EB/OL]. (2021-06-02)[2022-11-23]. https://arxiv.org/abs/2106.01153.
[34] KARTHIK S, PRABHU A, GANDHI V. Simple unsupervised multi-object tracking[EB/OL]. (2020-06-04). [2022-11-23]. https://arxiv.org/abs/2006.02609.
[35] REN W H, WANG X C, TIAN J D, et al. Tracking-by-counting: using network flows on crowd density maps for tracking multiple targets[J]. IEEE Transactions on Image Processing, 2021, 30: 1439-1452.
[36] LI R, ZHANG B P, TENG Z, et al. An end-to-end identity association network based on geometry refinement for multi-object tracking[J]. Pattern Recognition, 2022, 129: 1-13.
[37] ZHANG Y, SHENG H, WU Y B, et al. Multiplex labeling graph for near-online tracking in crowded scenes[J]. IEEE Internet of Things Journal, 2020, 7(9): 7892-7902. |