[1] GOPALAN A, RAMASUBRAMANIAN S. IP fast rerouting and disjoint multipath routing with three edge-independent spanning trees[J]. IEEE/ACM Transactions on Networking, 2018, 24 (3): 1336-1349.
[2] SINGH V, BHARTI A K, CHANDRA N. Edge computing: a soul to internet of things (IoT) data[M]//Artificial intelligence and machine learning for EDGE computing. New York: Academic Press, 2022: 355-372.
[3] SHUKLA S, HASSAN M, TRAN D C, et al. Improving latency in internet-of-things and cloud computing for real-time data transmission: a systematic literature review (SLR)[J]. Cluster Computing, 2021, 26(1): 1-24.
[4] TAPOLCAI J, RETVARI G, BABARCZI P, et al. Scalable and efficient multipath routing: complexity and algorithms[C]//2015 IEEE 23rd International Conference on Network Protocols (ICNP), San Francisco, USA, Nov 10-13, 2015. Piscataway: IEEE, 2016: 1092-1648.
[5] YANG Y, XU M W, LI Q. Tunneling on demand: a lightweight approach for IP fast rerouting against multi-link failures[C]//Proceedings of the International Symposium on Quality of Service, Alberta, Canada, Jun 4-6, 2018. Piscataway: IEEE, 2018:1-10.
[6] MANI S, NENE M J. Data loss prevention due to link-flapping using software defined networking[C]//2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, April 2-4, 2021. Piscataway: IEEE, 2021:1-5.
[7] BOGLE J, BHATIA N, GHOBADI M, et al. Teavar: striking the right utilization-availability balance in WAN traffic engineering[C]//Proceedings of ACM Special Interest Group on Data Communication, Beijing, China, Aug 19-23, 2019. New York: ACM Press, 2019: 29-43.
[8] QIU K, ZHAO J, WANG X, et al. Efficient recovery path computation for fast reroute in large-scale software defined networks[J].IEEE Journal on Selected Areas in Communications, 2019, 37(8): 1755-1768.
[9] 耿海军, 施新刚, 王之梁, 等. 基于最小路径交叉度的域内路由保护方案[J].软件学报, 2020, 31(5):1536-1548.
GENG H J, SHI X G, WANG Z L, et al. Intra-domain routing protection scheme based on minimum intersection paths[J]. Journal of Software, 2020, 31(5):1536-1548.
[10] JIANG J F, HAN G J. Routing protocols for unmanned aerial vehicles[J]. IEEE Communications Magazine, 2018, 56(1):58-63.
[11] SCHNEIDER K, ZHANG B, BENMOHAMED L. Hop-by-hop multipath routing: choosing the right next hop set[C]//IEEE 2020 International Conference on Computer Communications, Jul 6-9, 2020. Piscataway: IEEE, 2020: 2273-2282.
[12] MOY J. OSPF version 2: RFC 2328[S/OL]. IETF STD 54 (1998-04)[2022-06-12]. https://www.rfc-editor.org/rfc/rfc2178.html.
[13] SHAND M, BRYANT S. IP fast reroute framework: RFC 5714[S/OL]. Fremont: IETF (2010-01) [2022-08-02]. https://tools.ietf.org/html/rfc5714.
[14] ATLAS A.U-turn alternates for IP/LDP fast-reroute[S]. USA: ISOC Internet Society, 2006.
[15] YANG X W, WETHERALL D. Source selectable path diversity via routing deflections[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(4):159-170.
[16] CEVHER S, ULUTAS M, ALTUN S, et al. Multiple routing configurations for fast re-route in software defined networks[C]//2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, May 16-19, 2016. Piscataway: IEEE, 2016: 993-996.
[17] FILSFILS C, PREVIDI S, GINSBERG L, et al. Segment routing architecture: RFC 8402[S]. IETF, July 2018.
[18] CHENG W, LI Z, LI C, et al. Generalized SRv6 network programming for SRv6 compression[S]. IETF Datatracker, 2020.
[19] FILSFILS C, NAINAR N K, PIGNATARO C, et al. The segment routing architecture[C]//IEEE Global Communications Conference, San Diego, USA Dec 6-10, 2015. Piscataway: IEEE, 2015.
[20] LI Z, HU Z, LI C. SRv6 network programming: ushering in a new era of IP networks[M]. Boca Raton: CRC Press, 2021.
[21] XU A, BI J, ZHANG B B, et al. Failure inference for shortening traffic detours [C]//IEEE/ACM International Symposium on Quality of Service, Vilanova i la Geltrú, Spain, Jun 14-16, 2017. Piscataway: IEEE, 2017:1-10. |