计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 213-222.DOI: 10.3778/j.issn.1002-8331.2110-0231
王黎明,孙俊,陈祺东
WANG Liming, SUN Jun, CHEN Qidong
摘要: 在多目标跟踪任务中,重识别(re-identification,Re-ID)效果通常依赖于检测性能的好坏,检测偏差会导致Re-ID特征模糊,从而降低重识别精度。特别是在尺度变化和频繁遮挡等复杂场景下,Re-ID鲁棒性不高,多目标跟踪效果较差。针对该问题,提出一种加强重识别的行人多目标跟踪算法。该算法以CenterNet为检测器,通过预测目标中心点热力图来检测目标位置,并设计检测偏差损失加强对预测热力图响应值的约束,以缓解因检测不准确导致的Re-ID特征模糊问题。为提高Re-ID鲁棒性,提出Re-ID可学习特征动态扩充策略。该策略通过自适应扩充目标中心的Re-ID可学习特征来提高特征质量,并减小Re-ID对中心点检测精度的依赖。在MOT16和MOT17测试集上进行验证,结果表明,算法能有效提升Re-ID性能,与主流算法相比具有更好的跟踪效果,且兼顾了实时性,达到25.6 FPS。