[1] BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), 2016: 3464-3468.
[2] SUN S J, AKHTAR N, SONG H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1): 104-119.
[3] XU J, CAO Y, ZHANG Z, et al. Spatial-temporal relation networks for multi-object tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3988-3998.
[4] BERGMANN P, MEINHARDT T, LEAL-TAIZE L. Tracking without bells and whistles[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 941-951.
[5] MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. Trackformer: multi-object tracking with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8844-8854.
[6] ZHOU X, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 474-490.
[7] ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-21.
[8] GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[9] 袁姮, 赵肖祎. 流形背景感知的相关滤波目标跟踪[J]. 计算机科学与探索, 2023, 17(6): 1373-1386.
YUAN H, ZHAO X Y. Manifold background-aware correlation filter target tracking[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1373-1386.
[10] ZOU Z, HUANG J, LUO P. Compensation tracker: reprocessing lost object for multi-object tracking[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 307-317.
[11] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
[12] LIANG C, ZHANG Z, ZHOU X, et al. One more check: making “fake background” be tracked again[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1546-1554.
[13] HYUN J, KANG M, WEE D, et al. Detection recovery in online multi-object tracking with sparse graph tracker[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 4850-4859.
[14] 汪强, 卢先领. 时空模板更新的Transformer目标跟踪算法[J]. 计算机科学与探索, 2023, 17(9): 2161-2173.
WANG Q, LU X L. Transformer object tracking algorithm based on spatio-temporal template update[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2161-2173.
[15] PANG H, SU J, MA R, et al. Multiple templates transformer for visual object tracking[J]. Knowledge-Based Systems, 2023(25): 280.
[16] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 107-122.
[17] DU Y, ZHAO Z, SONG Y, et al. StrongSORT: make deepSORT great again[J]. IEEE Transactions on Multimedia, 2023.
[18] DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: a benchmark for multi object tracking in crowded scenes[J]. arXiv:2003.09003, 2020.
[19] CHEN L, AI H, ZHUANG Z, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018: 1-6.
[20] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), 2017: 3645-3649.
[21] YU F, LI W, LI Q, et al. POI: multiple object tracking with high performance detection and appearance feature[J]. arXiv:1610.06136, 2016.
[22] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209. 02976, 2022.
[23] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[24] LU Z, RATHOD V, VOTEL R, et al. RetinaTrack: online single stage joint detection and tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14668-14678.
[25] PANG J, QIU L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 164-173.
[26] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[27] WU J, CAO J, SONG L, et al. Track to detect and segment: an online multi-object tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12352-12361.
[28] WANG Q, ZHENG Y, PAN P, et al. Multiple object tracking with correlation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3876-3886.
[29] YASEEN S A, SASI S. Robust algorithm for object detec tion and tracking in a dynamic scene[J]. Journal of Image and Graphics, 2014, 2(1): 41-45.
[30] MUDARISOV S, GAINULLIN I, GABITOV I, et al. Soil compaction management: reduce soil compaction using a chain-track tractor[J]. Journal of Terramechanics, 2020, 89: 1-12.
[31] PENG J, WANG C, WAN F, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[J]. arXiv:2007. 14557, 2020.
[32] LIANG C, ZHANG Z, ZHOU X, et al. Rethinking the competition between detection and reid in multiobject tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196.
[33] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97.
[34] ESS A, LEIBE B, SCHINDLER K, et al. A mobile vision system for robust multi-person tracking[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
[35] ZHANG S, BENENSON R, SCHIELE B. Citypersons: a diverse dataset for pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3213-3221.
[36] ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1367-1376.
[37] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: a benchmark[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 304-311.
[38] XIAO T, LI S, WANG B, et al. Joint detection and identification feature learning for person search[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3415-3424.
[39] STANDLER D, BEYERER J. Improving multiple pedestrian tracking by track management and occlusion handling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10958-10967.
[40] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008: 2463090.
[41] LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129: 548-578.
[42] ZHANG Y, SHENG H, WU Y, et al. Multiplex labeling graph for near-online tracking in crowded scenes[J]. IEEE Internet of Things Journal, 2020, 7(9): 7892-7902.
[43] IBRAHIM N, DARLIS A R, KUSUMOPUTRO B. Performance analysis of fuzzy-weighted multiple instance learning on thermal video-based visual tracking[J]. Journal of Image and Graphics (United Kingdom), 2022, 10(2): 88-94.
[44] HORNAKOVA A, KAISER T, SWOBODA P, et al. Making higher order mot scalable: an efficient approximate solver for lifted disjoint paths[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 6330-6340.
[45] DAI P, WENG R, CHOI W, et al. Learning a proposal classifier for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2443-2452.
[46] KAWANISHI Y. Label-based multiple object ensemble tracking with randomized frame dropping[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), 2022: 900-906.
[47] SHAO S, ZHAO Z, LI B, et al. Crowdhuman: a benchmark for detecting human in a crowd[J]. arXiv:1805.00123, 2018.
[48] CHEN M, LIAO Y, LIU S, et al. TR-MOT: multi-object tracking by reference[J]. arXiv:2203.16621, 2022.
[49] WANG Y, KITANI K, WENG X. Joint object detection and multi-object tracking with graph neural networks[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13708-13715.
[50] CAI J, XU M, LI W, et al. MeMOT: multi-object tracking with memory[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8090-8100. |