计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 194-201.DOI: 10.3778/j.issn.1002-8331.2401-0443

• 模式识别与人工智能 • 上一篇    下一篇

结合GAT与卷积神经网络的知识超图链接预测

庞俊,马志芬,林晓丽,王蒙湘   

  1. 1.武汉科技大学 计算机科学与技术学院,武汉 430065
    2.智能信息处理与实时工业系统湖北省重点实验室,武汉 430065
    3.中国标准化研究院,北京 100088
  • 出版日期:2025-05-01 发布日期:2025-04-30

Knowledge Hypergraph Link Prediction Based on GAT and Convolutional Neural Network

PANG Jun, MA Zhifen, LIN Xiaoli, WANG Mengxiang   

  1. 1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, China
    3.China Institute of Standardization, Beijing 100088, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。

关键词: 知识超图, 链接预测, 卷积神经网络, 注意力机制

Abstract: Knowledge hypergraph (KHG) is a hypergraph structured knowledge graph. Knowledge hypergraph link prediction is based on known entities and relationships to predict missing entities or relationships, which is of great significance and value. However, the existing neural network-based methods of knowledge hypergraph link prediction only focus on the semantic features localized to the relationship facts and lack the representation learning of the association features between the relationship facts. To address the above problems, a knowledge hypergraph link prediction method based on graph attention network and convolutional neural network (HPGC) is proposed. On the one hand, an improved convolutional network is used to extract local features of node entity representations in the knowledge hypergraph; on the other hand, an improved GAT is used for attention modeling of nodes and relations, capturing global feature relations between nodes and merging them, so as to obtain a more comprehensive neighborhood structure of the relation facts, and to enrich the semantic representations of the relation facts in the hypergraph. In addition, to address the GAT layer output vector problem of HPGC, which introduces a multilayer perceptron (MLP) and regularization techniques to enhance the generalization ability of model training. Extensive experimental results on real datasets validate that the prediction performances of the proposed methods outperform the baseline methods.

Key words: knowledge hypergraph, link prediction, convolutional neural network, attention mechanism