计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 101-111.DOI: 10.3778/j.issn.1002-8331.2412-0348

• 目标检测专题 • 上一篇    下一篇

EMF-YOLO:轻量化多尺度特征提取路面缺陷检测算法

秦乐,谭泽富,雷国平,陈秋伯   

  1. 重庆三峡学院 电子与信息工程学院,重庆 404100
  • 出版日期:2025-07-15 发布日期:2025-07-15

EMF-YOLO: Lightweight Multi-Scale Feature Extraction Algorithm for Road Surface Defect Detection

QIN Le, TAN Zefu, LEI Guoping, CHEN Qiubo   

  1. School of Electronics and Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 道路表面缺陷检测是保障行车安全和延长道路使用寿命的重要技术。现有的道路缺陷检测算法在处理复杂背景、实时性及内存占用方面存在局限性。为此,提出一种基于YOLOv8n的轻量化改进算法EMF-YOLO,旨在提升检测精度并减少计算和内存开销。引入增强型特征融合金字塔EFFPN(enhanced feature fusion pyramid network),优化特征融合路径,提升多尺度特征表示能力。结合可变形注意力机制增强复杂场景下的特征提取能力,并通过多尺度边缘敏感性增强模块MESA(multi-scale edge sensitivity augmentation)替代传统C2f卷积,增强小目标检测能力。设计基于解耦批归一化的共享卷积检测头DBSCD(decoupled bn shared convolution detection head),显著降低模型的参数量和计算复杂度,进一步减小模型体积并加快推理速度。实验结果表明,EMF-YOLO在RDD2022数据集上的检测精度达到了89.2%,较YOLOv5n提高了2个百分点,模型参数量和计算量分别减少了36.1%和25%,在提高检测精度的同时实现较好的轻量化性能。

关键词: 路面缺陷检测, YOLOv8, 轻量化, 多尺度特征提取, 边缘敏感性增强

Abstract: Road surface defect detection is vital for driving safety and extending road lifespan. Existing algorithms  struggle with complex backgrounds, real-time processing, and memory usage. This paper presents EMF-YOLO, an improved lightweight algorithm based on YOLOv8n, aiming to enhance detection accuracy while reducing computational and memory costs. The method introduces an enhanced feature fusion pyramid (EFFP) to optimize multi-scale feature representation, and incorporates a deformable attention mechanism (DA) to improve feature extraction in complex scenes. A multi-scale edge sensitivity enhancement (MESA) module replaces traditional C2f convolution to enhance small object detection. Additionally, a decoupled batch normalization-based shared convolution detection head (DBSCD) reduces model parameters and computational complexity, decreasing model size and speeding up inference. Experimental results show that EMF-YOLO achieves 89.2% detection accuracy on the RDD2022 dataset, outperforming YOLOv5n by 2 percentage points, while reducing model parameters and computation by 36.1% and 25%, respectively, balancing accuracy with lightweight performance.

Key words: road surface defect detection, YOLOv8, lightweight, multi-scale feature extraction, edge sensitivity enhancement