[1] 李伟东, 黄振柱, 何精武, 等. 改进行为克隆与DDPG的无人驾驶决策模型[J]. 计算机工程与应用, 2024, 60(14): 86-95.
LI W D, HUANG Z Z, HE J W, et al. Improved behavioral cloning and DDPG’s driverless decision model[J]. Computer Engineering and Applications, 2024, 60(14): 86-95.
[2] 新华社. 全国机动车达4. 4亿辆驾驶人达5.32亿人[EB/OL]. (2024-07-08)[2024-11-26]. https://www.gov.cn/lianbo/bumen/202407/content_6961935.htm.
Xinhua News Agency. The country has 440 million motor vehicles and 532 million drivers[EB/OL]. (2024-07-08)[2024-11-26]. https://www.gov.cn/lianbo/bumen/202407/content_6961935.htm.
[3] 古佳欣, 陈高华, 张春美. YOLOv8-DEL: 基于改进YOLOv8n的实时车辆检测算法研究[J]. 计算机工程与应用, 2025, 61(1): 142-152.
GU J X, CHEN G H, ZHANG C M. YOLOv8-DEL: research on real-time vehicle detection algorithm based on improved YOLOv8n[J]. Computer Engineering and Applications, 2025, 61(1): 142-152.
[4] FANG S Q, ZHANG B, HU J Y. Improved mask R-CNN multi-target detection and segmentation for autonomous driving in complex scenes[J]. Sensors, 2023, 23(8): 3853.
[5] HU M D, WU Y, YANG Y Z, et al. DAGL-Faster: domain adaptive faster R-CNN for vehicle object detection in rainy and foggy weather conditions[J]. Displays, 2023, 79: 102484.
[6] ALMUSAWI M, SHIVAPRASAD YADAV S G, RAHIM A, et al. Military vehicle object detection based on feature representation and refined localization using inception recurrent convolutional neural network[C]//Proceedings of the 2024 International Conference on Distributed Computing and Optimization Techniques. Piscataway: IEEE, 2024: 1-5.
[7] JOCHE G, CHAURASIA A. Ultralytics/YOLOv5 in PyTorch[EB/OL]. [2024-09-10]. https://githubcom/ultralytics/yolov5.
[8] JOCHE G, CHAURASIA A. Ultralytics/YOLOv8 in PyTorch[EB/OL]. [2024-09-10]. https://githubcom/ultralytics/yolov8.
[9] NAGARAJ P, MUTHAMIL S K, GURUSIGAAMANI A M, et al. Traffic detection and enhancing traffic safety: YOLO V8 framework and OCR for violation detection using deep learning techniques[C]//Proceedings of the 2024 International Conference on Science Technology Engineering and Management. Piscataway: IEEE, 2024: 1-6.
[10] LIU Q, LIU Y, LIN D. Revolutionizing target detection in intelligent traffic systems: YOLOv8-SnakeVision[J]. Electronics, 2023, 12(24): 4970.
[11] QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6047-6056.
[12] LIU Z Q, LI J J, SONG R, et al. Edge guided context aggregation network for semantic segmentation of remote sensing imagery[J]. Remote Sensing, 2022, 14(6): 1353.
[13] LI Y H, HUANG Y R, TAO Q. Improving real-time object detection in Internet-of-things smart city traffic with YOLOv8-DSAF method[J]. Scientific Reports, 2024, 14(1): 17235.
[14] TANG J, YE C X, ZHOU X L, et al. YOLO-fusion and Internet of things: advancing object detection in smart transportation[J]. Alexandria Engineering Journal, 2024, 107: 1-12.
[15] 袁姮, 耿仪坤. 特征细化和多尺度注意力的Transformer图像去噪网络[J]. 计算机科学与探索, 2024, 18(7): 1838-1851.
YUAN H, GENG Y K. Feature refinement and multi-scale attention for transformer image denoising network[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1838-1851.
[16] 钱承山, 沈有为, 孙宁, 等. 基于Transformer改进YOLOv5的山火检测方法研究[J]. 电子测量技术, 2023, 46(16): 46-56.
QIAN C S, SHEN Y W, SUN N, et al. Research on improved YOLOv5 forest fire detection method based on Transformer[J]. Electronic Measurement Technology, 2023, 46(16): 46-56.
[17] 刘思佚, 徐东辉, 刘丁胤, 等. 基于CNN-Transformer融合的频谱感知方法研究[J/OL]. 无线电通信技术, 2024: 1-7(2024-09-03)[2024-11-18]. http://kns.cnki.net/kcms/detail/13.1099.TN.20240902.1613.006.html.
LIU S Y, XU D H, LIU D Y, et al. Research on spectrum sensing method based on CNN-Transformer fusion[J/OL]. Radio Communications Technology, 2024: 1-7(2024-09-03)[2024-11-18]. http://kns.cnki.net/kcms/detail/13.1099.TN.20240902. 1613.006.html.
[18] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 933-941.
[19] SHI D. TransNeXt: robust foveal visual perception for vision transformers[J]. arXiv:2311.17132, 2023.
[20] 马下平, 王风凯, 赵庆志, 等. 深度学习的大高差高海拔地区高程拟合方法[J]. 测绘通报, 2024(8): 102-108.
MA X P, WANG F K, ZHAO Q Z, et al. Elevation fitting method in high altitude area with large elevation difference based on deep learning[J]. Bulletin of Surveying and Mapping, 2024(8): 102-108.
[21] ISLAM M A, JIA S, BRUCE N D. How much position information do convolutional neural networks encode?[J]. arXiv:2001.08248, 2020.
[22] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023.
[23] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[24] 朱彦,张月霞.SEP-YOLO: 基于YOLOv8改进的道路目标检测算法[J/OL].计算机应用与软件,2024:1-8[2024-09-20].http://kns.cnki.net/kcms/detail/31.1260tp.20240829.1140.002.html.
ZHU Y, ZHANG Y X. SEP-YOLO: road object detection algorithm improved based on YOLOv8[J/OL].Computer Applications and Software,2024:1-8[2024-09-20].http://kns.cnki.net/kcms/detail/31.1260.tp.20240829.1140.002.html.
[25] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9300-9308.
[26] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[27] RUAN L, BEMANA M, SEIDEL H P, et al. Revisiting image deblurring with an efficient convNet[J]. arXiv:2302.02234, 2023.
[28] LIU S, CHEN T, CHEN X, et al. More ConvNets in the 2020s: scaling up kernels beyond 51x51 using sparsity[J]. arXiv:2207.03620, 2022.
[29] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[30] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small object detection based on attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 90-101.
[31] CUI Y N, KNOLL A. Dual-domain strip attention for image restoration[J]. Neural Networks, 2024, 171: 429-439.
[32] LI C Y, GUO C L, ZHOU M, et al. Embedding Fourier for ultra-high-definition low-light image enhancement[J]. arXiv: 2302.11831, 2023.
[33] MAO X T, LIU Y M, LIU F Z, et al. Intriguing findings of frequency selection for image deblurring[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(2): 1905-1913.
[34] QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 763-772.
[35] SANG M F, HANSEN J H L. Multi-frequency information enhanced channel attention module for speaker representation learning[J]. arXiv:2207.04540, 2022.
[36] WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
[37] 皇甫俊逸, 孟乔, 孟令辰, 等. 基于GhostNet与注意力机制的YOLOv5交通目标检测[J]. 计算机系统应用, 2023, 32(4): 149-160.
HUANGFU J Y, MENG Q, MENG L C, et al. YOLOv5 traffic object detection based on GhostNet and attention mechanism[J]. Computer Systems and Applications, 2023, 32(4): 149-160.
[38] HAN J H, LIANG X W, XU H, et al. SODA10M: a large-scale 2D self/semi-supervised object detection dataset for autonomous driving[J]. arXiv:2106.11118, 2021.
[39] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[J]. arXiv:2303.03667, 2023.
[40] FAN Q H, HUANG H B, GUAN J Y, et al. Rethinking local perception in lightweight vision transformer[J]. arXiv:2303. 17803, 2023.
[41] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[42] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[43] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[44] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[45] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[46] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv: 2309.11331, 2023. |