[1] 张浩, 王玮, 徐丽杰, 等. 图像识别技术在电力设备监测中的应用[J]. 电力系统保护与控制, 2010, 38(6): 88-91.
ZHANG H, WANG W, XU L J, et al. Application of image recognition technology in power equipment monitoring[J]. Power System Protection and Control, 2010, 38(6): 88-91.
[2] 丁四海, 刘玉雪, 路林吉. 数字图像处理技术在电气控制柜开关状态识别中的应用[J]. 微型电脑应用, 2013, 30(5): 39-40.
DING S H, LIU Y X, LU L J. Application of digital image processing technology in electrical control cabinet switch state identification[J]. Microcomputer Applications, 2013, 30(5): 39-40.
[3] LIU Y, YONG J, LIU L, et al. The method of insulator recognition based on deep learning[C]//Proceedings of the International Conference on Applied Robotics for the Power Industry, 2016: 1-5.
[4] LIN H, ZHANG W, et al. A condition monitoring algorithm based on image geometric analysis for substation switch[C]//Proceedings of the International Conference on Intelligent Computing and Internet of Things, 2015: 72-76.
[5] 宋亚凯, 樊晓虹, 何国锋, 等. 基于轮廓匹配度的隔离开关三相分合闸状态同步识别算法研究[J]. 高压电器, 2022, 58(4): 151-157.
SONG Y K, FAN X H, HE G F, et al. Synchronous recognition algorithm of three-phase opening and closing state of disconnector based on contour matching degree[J]. High Voltage Apparatus, 2022, 58(4): 151-157.
[6] 邵剑雄, 闫云凤, 齐冬莲. 基于霍夫森林的变电站开关设备检测及状态识别[J]. 电力系统自动化, 2016, 40(11): 115-120.
SHAO J X, YAN Y F, QI D L. Substation switch detection and state recognition based on Hough forests[J]. Power System Automation, 2016, 40(11): 115-120.
[7] KHAN D. Deep learning based power switch detection and state recognition[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[8] 张骥, 张金锋, 朱能富, 等. 基于改进深度学习的刀闸状态识别方法研究[J]. 电测与仪表, 2018, 55(5): 8-13.
ZHANG J, ZHANG J F, ZHU N F, et al. Research of the switch state recognition method based on the improved deep learning[J]. Electrical Measurement & Instrumentation, 2018, 55(5): 8-13.
[9] CHEN T, ZHANG G Y, QI D L. A recognition method of smart substation switchgear state based on fully convolutional networks[C]//Proceedings of the 35th Chinese Control Conference, 2016: 9894-9897.
[10] 刘梓权, 王慧芳, 管敏渊, 等. 隔离开关图像数据扩充方法及其在自动状态识别中的应用[J]. 高电压技术, 2020, 46(2): 441-447.
LIU Z Q, WANG H F, GUAN M Y, et al. Isolation switch image data expansion method and it’s application in automatic state identification[J]. High Voltage Technology, 2020, 46(2): 441-447.
[11] 尤振飞, 赵健, 王小宇, 等. 基于语义分割与连通区域标记的隔离开关状态识别方法[J]. 电力系统自动化, 2021, 45(20): 157-165.
YOU Z F, ZHAO J, WANG S Y, et al. State recognition method for disconnector based on semantic segmentation and connected component labeling[J]. Power System Automation, 2021, 45(20): 157-165.
[12] 李文亮. 雷达点云与图像结合的刀闸状态精确检测研究[D]. 广州: 华南理工大学, 2022.
LI W L. Research on accurate detection of the stateof isolator based on radar point cloud and image[D]. Guangzhou: South China University of Technology, 2022.
[13] REDMON J, FARHADI A. YOLOv3: an incrementalimprovement[J]. arXiv:1804.02767, 2018.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLO-v4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[15] 王鹏, 王玉林, 焦博文, 等. 基于YOLOv5的道路目标检测算法研究[J]. 计算机工程与应用, 2023, 59(1): 117-125.
WANG P, WANG Y L, JIAO B W, et al. Research on road target detection algorithm based on YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 117-125.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[J]. arXiv:2207.02696, 2022.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[18] CHEN L C, PAPANDREOU G, KOK-KINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[19] HE K, ZHANG X Y, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[20] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[21] LIU S, QI L, QIN H F, et al. Path aggregation net-work for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[22] VASU P K A, GABRIEL J, ZHU J , et al. MobileOne: an improved one millisecond mobile backbone[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7907-7917.
[23] POWERS D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness&correlation[J].arXiv:2010.16061, 2020.
[24] ZHENG Z, WANG P, LIU W, et al. Distance-IoU l-oss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000. |