[1] DIDKOVSKYI V, KOZERUK S, KORZHIK O. Simple acoustic array for small UAV detection[C]//Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology, 2019: 656-659.
[2] VAN NGUYEN H, REZATOFIGHI H, VO B N, et al. Online UAV path planning for joint detection and tracking of multiple radio-tagged objects[J]. IEEE Transactions on Signal Processing, 2019, 67(20): 5365-5379.
[3] AI X, ZHANG L, ZHENG Y, et al. Passive detection experiment of UAV based on 5G new radio signal[C]//Proceedings of the 2021 Photonics & Electromagnetics Research Symposium, 2021: 2124-2129.
[4] KAPOULAS I K, HATZIEFREMIDIS A, BALDOUKAS A K, et al. Small fixed-wing UAV radar cross-section signature investigation and detection and classification of distance estimation using realistic parameters of a commercial anti-drone system[J]. Drones, 2023, 7(1): 39.
[5] 罗俊海,王芝燕. 无人机探测与对抗技术发展及应用综述[J]. 控制与决策, 2022, 37(3): 530-544.
LUO J H, WANG Z Y. A review of development and application of UAV detection and counter technology[J]. Control and Decision, 2022, 37(3): 530-544.
[6] 张灵灵, 王鹏, 李晓艳, 等. 基于优化SSD的低空无人机检测方法[J]. 计算机工程与应用, 2022, 58(16): 204-212.
ZHANG L L, WANG P, LI X Y, et al. Low-altitude UAV detection method based on optimized SSD[J]. Computer Engineering and Applications, 2022, 58(16): 204-212.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[8] HU Y, WU X, ZHENG G, et al. Object detection of UAV for anti-UAV based on improved YOLO v3[C]//Proceedings of the 2019 Chinese Control Conference, 2019: 8386-8390.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] LV Y, AI Z, CHEN M, et al. High-resolution drone detection based on background difference and SAG?YOLOv5s[J]. Sensors, 2022, 22(15): 5825.
[12] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 879-892.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[14] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14):15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[15] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[18] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[21] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788. |