[1] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[2] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[3] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[4] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Good practice in large-scale learning for image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 507-520.
[5] AGRAWAL P, GIRSHICK R, MALIK J. Analyzing the performance of multilayer neural networks for object recognition[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 329-344.
[6] HU M, WU Y, YANG Y, et al. DAGL-Faster: domain adaptive faster RCNN for vehicle object detection in rainy and foggy weather conditions[J]. Displays, 2023, 79: 102484.
[7] CHEN H, GUO X, et al. Multi-scale feature fusion pedestrian detection algorithm based on transformer[C]//Proceedings of the 2023 4th International Conference on Computer Vision, Image and Deep Learning, Zhuhai, 2023: 536-540.
[8] 杨祥, 王华彬, 董明刚. 改进YOLOv5的交通标志检测算法[J]. 计算机工程与应用, 2023, 59(13): 194-204.
YANG X, WANG H B, DONG M G. Improved YOLOv5’s traffic sign detection algorithm[J]. Computer Engineering and Applications, 2023, 59(13): 194-204.
[9] 杜娟, 崔少华, 晋美娟, 等. 改进YOLOv7的复杂道路场景目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 96-103.
DU J, CUI S H, JIN M J, et al. Improved complex road scene object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(1): 96-103.
[10] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 6517-6525.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[14] BOCHKOVSKIV A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[15] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[16] WANG C Y, BOCHKOVSKIV A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464-7475.
[17] DING X H, ZHANG X Y, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 10881-10890.
[18] MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[19] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, 2020: 12993-13000.
[20] YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 2633-2642.
[21] HAN J, LIANG X, XU H, et al. SODA10M: a large-scale 2D self/semi-supervised object detection dataset for autonomous driving[J]. arXiv:2106.11118, 2021.
[22] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 2818-2826.
[23] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics, Honolulu, 2023: 2184-2189.
[24] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, 2021: 3138-3147. |