[1] MITTAL P, SINGH R, SHARMA A. Deep learning-based object de-tection in low-altitude UAV datasets: a survey[J]. Image and Vision Computing, 2020, 104: 104046.
[2] CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
[3] 董刚, 谢维成, 黄小龙, 等.深度学习小目标检测算法综述[J].计算机工程与应用,2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, 2015.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016.
[7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[8] 胡皓, 郭放, 刘钊.改进YOLOX-S模型的施工场景目标检测[J].计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv: 2207.02696, 2022.
[10] 赵振兵, 王帆帆, 刘良帅, 等.基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J].电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Hardware detection method of aerial image of UVA transmission line based on attention feature fusion YOLOv5 model[J].Electrical Measurement & Instrumentation, 2023, 60(3): 145-152.
[11] 苏俊楷, 段先华, 叶赵兵.改进YOLOv5算法的玉米病害检测研究[J].计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J].Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941.
[12] 冒国韬, 邓天民, 于楠晶.基于多尺度分割注意力的无人机航拍图像目标检测算法[J].航空学报, 2023, 44(5): 273-283.
MAO G T, DENG T M, YU N J. Object detection in UAV images based on multi-scale split attention[J].Acta Aeronauticaet Astronautica Sinica, 2023, 44(5): 273-283.
[13] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone?captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018.
[15] LU X, JI J, XING Z, et al. Attention and feature fusion SSD for remote sensing object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9.
[16] 李坤亚, 欧鸥, 刘广滨, 等.改进YOLOv5的遥感图像目标检测算法[J].计算机工程与应用, 2023, 59(9): 207-214.
LI K Y, OU O, LIU G B, et al. Target detection algorithm of remote sensing image based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(9): 207-214.
[17] XU X, FENG Z, CAO C, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote Sensing, 2021, 13(23): 4779.
[18] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter?free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[19] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[21] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[22] ZHANG J, XIA K, HUANG Z, et al. ETAM: ensemble transformer with attention modules for detection of small objects[J]. Expert Systems with Applications, 2023, 224: 119997.
[23] YANG X, ZHANG G, YANG X, et al. Detecting rotated objects as Gaussian distributions and its 3D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(4): 4335-4354.
[24] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv: 2110.13389, 2021.
[25] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J].arXiv:2010.11929, 2020.
[26] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[27] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision workshops, 2019.
[28] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision, 2018.
[29] FANG X L, HU F, YANG M, et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters, 2022, 153: 107-112.
[30] WANG?G Q, ZHUANG Y, CHEN H, et al. FSoD-Net: fullscale object detection from optical remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18.
[31] WANG D, ZHANG J, DU B, et al. An empirical study of remote sensing pretraining[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 1-20.
[32] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[33] LI C, YANG T, ZHU S, et al. Density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
[34] DENG S, LI S, XIE K, et al. A global-local self-adaptive network for drone-view object detection[J]. IEEE Transactions on Image Processing, 2020, 30: 1556-1569.
[35] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. |