[1] GHASEMIEH A, KASHEF R. 3D object detection for autonomous driving: methods, models, sensors, data, and challenges[J]. Transportation Engineering, 2022, 8: 100115.
[2] QIAN R, LAI X, LI X. 3D object detection for autonomous driving: a survey[J]. Pattern Recognition, 2022, 130: 108796.
[3] 肖雨晴, 杨慧敏. 目标检测算法在交通场景中应用综述[J]. 计算机工程与应用, 2021, 57(6): 30-41.
XIAO Y Q, YANG H M. Research on application of object detection algorithm in traffic scene[J]. Computer Engineering and Applications, 2021, 57(6): 30-41.
[4] 李宇杰, 李煊鹏, 张为公. 基于视觉的三维目标检测算法研究综述[J]. 计算机工程与应用, 2020, 56(1): 11-24.
LI Y J, LI X P, ZHANG W G. Survey on vision-based 3D object detection methods[J]. Computer Engineering and Applications, 2020, 56(1): 11-24.
[5] ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[6] YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[7] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[8] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.
[9] SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
[10] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
[11] SHI S, JIANG L, DENG J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131: 531-551.
[12] CHEN C, CHEN Z, ZHANG J, et al. SASA: semantics-augmented set abstraction for point-based 3d object detection[C]//AAAI Conference on Artificial Intelligence, 2022.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[14] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[15] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 1-8.
[16] QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 918-927.
[17] WANG Z, JIA K. Frustum convnet: sliding frustums to aggregate local point-wise features for amodal 3D object detection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019: 1742-1749.
[18] SHI S, WANG Z, WANG X, et al. Part-A2 net: 3D part-aware and aggregation neural network for object detection from point cloud[J]. arXiv:1907.03670, 2019.
[19] HE Q, WANG Z, ZENG H, et al. SVGA-Net: sparse voxel-graph attention network for 3d object detection from point clouds[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 870-878.
[20] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1907-1915.
[21] YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//European Conference on Computer Vision. Cham: Springer, 2020: 720-736.
[22] LI Y, QI X, CHEN Y, et al. Voxel field fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1120-1129.
[23] YANG Z, SUN Y, LIU S, et al. STD: sparse-to-dense 3D object detector for point cloud[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1951-1960.
[24] HE C, ZENG H, HUANG J, et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11873-11882.
[25] YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048.
[26] DENG J, SHI S, LI P, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1201-1209.
[27] MAO J, XUE Y, NIU M, et al. Voxel transformer for 3D object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3164-3173.
[28] SONG N, JIANG T, YAO J. JPV-Net: joint point-voxel representations for accurate 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 2271-2279. |