Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (8): 46-55.DOI: 10.3778/j.issn.1002-8331.2305-0372
• Research Hotspots and Reviews • Previous Articles Next Articles
XIE Weiyu, ZHANG Qiang
Online:
2024-04-15
Published:
2024-04-15
谢威宇,张强
XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network[J]. Computer Engineering and Applications, 2024, 60(8): 46-55.
谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2305-0372
[1] 罗俊海, 王芝燕. 无人机探测与对抗技术发展及应用综述[J].控制与决策, 2022, 37(3): 530-544. LUO J H, WANG Z Y. A review of development and application of UAV detection and counter technology[J].Control and Decision, 2022, 37(3): 530-544. [2] 陈唯实, 黄毅峰, 陈小龙, 等. 机场净空区飞鸟与非合作无人机目标识别[J].民航学报, 2020, 4(3): 27-33. CHEN W S, HUANG Y F, CHEN X L, et al. Recognition methods of flying bird and non-cooperative drone targets in airport clearance aera[J].Journal of Civil Aviation, 2020, 4(3): 27-33. [3] 张灵灵. 基于改进YOLOv5的低空无人机检测方法研究[D]. 西安:西安工业大学, 2023. ZHANG L L. Research on low-altitude drone detection method based on improved YOLOv5[D]. Xi’an:Xi’an Technological University, 2023. [4] 梅枫, 高兴宇, 邓仕超, 等. 双目测距和YOLOv5s的无人机快速识别定位追踪系统[J].现代电子技术, 2023, 46(10): 181-186. MEI F, GAO X Y, DENG S C, et al. UAV rapid identification, positioning and tracking system based on binocular ranging and YOLOv5s[J].Modern Electronics Technique, 2023, 46(10): 181-186. [5] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001: 511-518. [6] VIOLA P, JONES M J. Robust real-time face detection[J].International Journal of Computer Vision, 2004, 57(2): 137-154. [7] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理, 2016, 31(1): 1-17. LU H T, ZHANG Q C. Applications of deep convolutional neural network in computer vision[J].Journal of Data Acquisition and Processing, 2016, 31(1): 1-17. [8] LECUN Y, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems 2, 1989: 396-404. [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, 2012: 1097-1105. [10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [11] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [12] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448. [13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real?time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015: 91-99. [14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2117-2125. [15] REDMON J, DIVVALA S, GIRSICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37. [17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. [18] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems 29, 2016: 379-387. [19] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969. [20] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [22] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 213-229. [23] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J].arXiv:2004.10934, 2020. [24] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. [25] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 740-755. [26] EVERINGHAM M, ESLAMI S M A, VAN G L, et al. The pascal visual object classes challenge: a retrospective[J].International Journal of Computer Vision, 2015, 111(1): 98-136. [27] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[D].California Institute of Technology, 2011. [28] LI J, YE D H, CHUNG T, et al. Multi-target detection and tracking from a single camera in unmanned aerial vehicles (UAVs)[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: 4992-4997. [29] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 879-892. [30] CHEN Y, AGGARWAL P, CHOI J, et al. A deep learning approach to drone monitoring[C]//Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2017: 686-691. [31] COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone vs. bird detection: deep learning algorithms and results from a grand challenge[J].Sensors, 2021, 21(8): 2824. [32] SVANSTR?M F, ENGLUND C, ALONSO F F. Real-time drone detection and tracking with visible, thermal and acoustic sensors[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR), 2021: 7265-7272. [33] PAWE?CZYK M, WOJTYRA M. Real world object detection dataset for quadcopter unmanned aerial vehicle detection[J].IEEE Access, 2020, 8: 174394-174409. [34] WALTER V, VRBA M, SASKA M. On training datasets for machine learning-based visual relative localization of micro-scale UAVs[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020: 10674-10680. [35] ZHENG Y, CHEN Z, LV D, et al. Air-to-air visual detection of micro-uavs: an experimental evaluation of deep learning[J].IEEE Robotics and Automation Letters, 2021, 6(2): 1020-1027. [36] JIANG N, WANG K, PENG X, et al. Anti-UAV: a large multi-modal benchmark for UAV tracking[J]. arXiv:2101.08466, 2021. [37] 蒋兆军, 成孝刚, 彭雅琴, 等. 基于深度学习的无人机识别算法研究[J].电子技术应用, 2017, 43(7): 84-87. JIANG Z J, CHENG X G, PENG Y Q, et al. A novel UAV recognition algorithm based on deep learning approach[J].Application of Electronic Technique, 2017, 43(7): 84-87. [38] COLUCCIA A, GHENESCU M, PIATRIK T, et al. Drone-vs-Bird detection challenge at IEEE AVSS2017[C]//Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017. [39] SCHUMANN A, SOMMER L, KLATTE J, et al. Deep cross-domain flying object classification for robust UAV detection[C]//Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017. [40] COLUCCIA A, SAQIB M, SHARMA N, et al. Drone-vs-Bird detection challenge at IEEE AVSS2019[C]//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019. [41] FERNANDES A, BAPTISTA M, FERNANDES L, et al. Drone, aircraft and bird identification in video images using object tracking and residual neural networks[C]//Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2019. [42] MEDIAVILLA C, NANS L, MAREZ D, et al. Detecting aerial objects: drones, birds, and helicopters[J].Artificial Intelligence and Machine Learning in Defense Applications III, 2021, 11870: 83-97. [43] ASHRAF M W, SULTANI W, SHAH M. Dogfight: detecting drones from drones videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7067-7076. [44] AKYON F C, AKAGUNDUZ E, ALTINUC S O, et al. Sequence models for drone vs. bird classification[J].arXiv:2207.10409, 2022. [45] IHEKORONYE V U, AJAKWE S O, KIM D S, et al. Aerial supervision of drones and other flying objects using convolutional neural networks[C]//Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2022: 69-74. [46] LIU S, LI G, ZHAN Y, et al. MUSAK: a multi-scale space kinematic method for drone detection[J].Remote Sensing, 2022, 14(6): 1434. [47] SOMMER L, SCHUMANN A, M?LLER T, et al. Flying object detection for automatic UAV recognition[C]//Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017. [48] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162. [49] XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500. [50] WANG X, YU K, WU S, et al. Esrgan: enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. [51] KIM J H, KIM N, WON C S. High-speed drone detection based on YOLOv8 Detecting aerial objects: drones, birds, and helicopters[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023. [52] MISTRY S K, CHATTERJEE S, VERMA A K, et al. Drone-vs-Bird: drone detection using YOLOv7 with CSRT tracker detecting aerial objects: drones, birds, and helicopters[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023. [53] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122, 2015. [54] CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection[C]//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019. [55] MAGOULIANITIS V, ATALOGLOU D, DIMOU A, et al. Does deep super-resolution enhance uav detection?[C]//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019. [56] XU N, PRICE B, COHEN S, et al. Deep image matting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2970-2979. [57] AFIFI M, DERPANIS K G, OMMER B, et al. Learning multi-scale photo exposure correction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9157-9167. [58] CHEN Z, WANG Y, YANG Y, et al. PSD: principled synthetic-to-real dehazing guided by physical priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7180-7189. [59] DONG H, PAN J, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157-2167. [60] LI L, DONG Y, REN W, et al. Semi-supervised image dehazing[J].IEEE Transactions on Image Processing, 2019, 29: 2766-2779. [61] SHAO Y, LI L, REN W, et al. Domain adaptation for image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2808-2817. [62] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J].IEEE Transactions on Image Processing, 2018, 28(1): 492-505. [63] ZHONG Z, ZHENG Y, SATO I. Towards rolling shutter correction and deblurring in dynamic scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9219-9228. [64] CHEN L, ZHANG J, PAN J, et al. Learning a non-blind deblurring network for night blurry images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10542-10550. [65] LIU Q, LU X, HE Z, et al. Deep convolutional neural networks for thermal infrared object tracking[J].Knowledge-Based Systems, 2017, 134: 189-198. [66] ZHOU X, YIN T, KOLTUN V, et al. Global tracking transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8771-8780. [67] TAO A, SAPRA K, CATANZARO B. Hierarchical multi-scale attention for semantic segmentation[J].arXiv:2005.10821, 2020. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | YANG Wentao, LEI Yuqi, LI Xingyue, ZHENG Tiancheng. Chinese Long Text Classification Model Based on BERT Fused Chinese Input Methods and BLCG [J]. Computer Engineering and Applications, 2024, 60(9): 196-202. |
[6] | TAO Linjuan, HUA Gengxing, LI Bo. Aspect-Level Sentiment Analysis Based on Location-Enhanced Word Embeddings and GRU-CNN Model [J]. Computer Engineering and Applications, 2024, 60(9): 212-218. |
[7] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[8] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[9] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[10] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[11] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[12] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[13] | GUO Jin, SONG Tingqiang, SUN Yuanyuan, GONG Chuanjiang, LIU Yalin, MA Xinglu, FAN Haisheng. Improved Deeplabv3+ Crop Classification Method Based on Double Attention Fusion [J]. Computer Engineering and Applications, 2024, 60(8): 110-120. |
[14] | TIAN Peng, MAO Li. Improved YOLOv8 Object Detection Algorithm for Traffic Sign Target [J]. Computer Engineering and Applications, 2024, 60(8): 202-212. |
[15] | DENG Xiquan, CHEN Gang. ConvUCaps: Medical Image Segmentation Model Based on Convolutional Capsule Network [J]. Computer Engineering and Applications, 2024, 60(8): 258-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||