[1] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[2] 李明山, 韩清鹏, 张天宇, 等. 改进SSD的安全帽检测方法[J]. 计算机工程与应用, 2021, 57(8): 192-197.
LI M S, HAN Q P, ZHANG T Y, et al. Improved safety helmet detection method for SSD[J]. Computer Engineering and Applications, 2021, 57(8): 192-197.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] Ultralytics. YOLOv5[EB/OL].(2018-10-11) [2020-08-09]. https://github.com/ultralytics/yolov5.
[11] 何丽, 张红艳, 房婉琳. 融合多尺度边界特征的显著实例分割[J]. 计算机科学与探索, 2022, 16(8): 1865-1876.
HE L, ZHANG H Y, FANG W L. Notable instance segmentation based on multi-scale boundary features[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(8): 1865-1876.
[12] 余震, 何留杰, 王振飞.基于中智理论与方向α-均值的图像边缘检测算法[J]. 电子测量与仪器学报, 2020, 34(3): 43-50.
YU Z, HE L J, WANG Z F. Image edge detection algorithm based on α-mean of CIZ theory and direction[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(3): 43-50.
[13] 朱炳宇, 刘朕, 张景祥.融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120.
ZHU B Y, LIU Z, ZHANG J X. COVID-19 detection algorithm based on Grad-CAM and convolutional neural network[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(9): 2108-2120.
[14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[15] LIU Z, LIN Y, CAO Y, et al. Swim transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[16] WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12270-12279.
[17] WU J, KUANG H, LU Q, et al. M-FasterSeg: an efficient semantic segmentation network based on neural architecture search[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104962.
[18] LIU Z, WANG L, WU W, et al. TAM: temporal adaptive module for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13708-13718.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[20] ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split-attention networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2736-2746.
[21] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6688-6697.
[22] HE Z. The Application of vision transformer in image classification[C]//Proceedings of the 6th International Conference on Virtual and Augmented Reality Simulations, 2022: 56-63.
[23] CHANG Z, LU Y, WANG X, et al. MGNet: mutual-guidance network for few-shot semantic segmentation[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105431.
[24] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2874-2883.
[25] AGARAP A F. Deep learning using rectified linear units (ReLU)[J]. arXiv:1803.08375, 2018.
[26] XU J, LI Z, DU B, et al. Reluplex made more practical: leaky ReLU[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications, 2020: 1-7.
[27] THAKUR R S, YADAV R N, GUPTA L. PReLU and edge-aware filter-based image denoiser using convolutional neural network[J]. IET Image Processing, 2020, 14(15): 3869-3879.
[28] MERCIONI M A, HOLBAN S. P-swish: activation function with learnable parameters based on swish activation function in deep learning[C]//Proceedings of the 2020 International Symposium on Electronics and Telecommunications, 2020: 1-4.
[29] MA N, ZHANG X, LIU M, et al. Activate or not: learning customized activation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8032-8042.
[30] 胡文骏, 杨莉琼, 肖宇峰, 等.识别安全帽佩戴的轻量化网络模型[J]. 计算机工程与应用, 2023, 59(13): 149-155.
HU W J, YANG L Q, XIAO Y F, et al. Lightweight network model for identifying safety helmet wearing[J]. Computer Engineering and Applications, 2023, 59(13): 149-155.
[31] 蒋润熙, 阿里甫·库尔班, 耿丽婷.面向轻量化网络的安全帽检测算法[J]. 计算机工程与应用, 2021, 57(20): 263-270.
JIANG R X, KURBAN A, GENG L T. Safety helmet detection algorithm for lightweight network[J]. Computer Engineering and Applications, 2021, 57(20): 263-270.
[32] 张锦, 屈佩琪, 孙程, 等.基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用, 2022, 42(4): 1292-1300.
ZHANG J, QU P Q, SUN C, et al. Safety helmet wearing detection algorithm based on improved YOLOv5[J]. Journal of Computer Applications, 2022, 42(4): 1292-1300.
[33] 丁田, 陈向阳, 周强, 等.基于改进YOLOX的安全帽佩戴实时检测[J]. 电子测量技术, 2022, 45(17): 72-78.
DING T, CHEN X Y, ZHOU Q, et al.Real-time detection of helmet wearing based on improved YOLOX[J]. Electronic Measurement Technology, 2022, 45(17): 72-78.
[34] GE Z, LIU S T, WANG F, et al.YOLOX: exceeding YOLO series in 2021[J]. arXiv: 2107.08430, 2021. |