[1] 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17.
LUO X W, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China Agricultural University, 2021, 42(6): 8-17.
[2] CHENNG X, ZHANG Y, CHEN Y, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture, 2017, 141: 351-356.
[3] ZHENG L, SHEN L. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1116-1124.
[4] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
ZHAI Z Y, CAO Y F, XU H L, et al. Review of key techniques for crop disease and pest detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[5] 赵路欢, 张玉波. 农业害虫专家系统信息化平台的构建[J]. 安徽农业科学, 2016, 44(15): 255-256.
ZHAO L H, ZHANG Y B. Construction of expert system information platform of agricultural pests[J]. Journal of Anhui Agriculture, 2016, 44(15): 255-256.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 1440-1448.
[8] JOSEPH R, SANTOSH D. You only look once: unified, real-time object detection[J]. arXiv:1506.02640, 2015.
[9] WANG C Y, ALEXEY B. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[10] GE Z, LIU S. YOLOX: ?exceeding?YOLO?series?in?2021[J]. arXiv:2107.08430, 2021.
[11] CHEN Q, WANG Y. You only look one-level feature[J]. arXiv:2103.09460, 2021.
[12] TENG Y, ZHANG J. MSR-RCNN: a multi-class crop pest detection network based on a multi-scale super-resolution feature enhancement module[J]. Frontiers in Plant Science, 2022, 13: 810546.
[13] 王昕, 董琴, 杨国宇. 基于优化CBAM改进YOLOv5的农作物病虫害识别[J]. 计算机系统应用, 2023, 32(7): 261-268.
WANG X, DONG Q, YANG G Y. YOLOv5 improved by optimized CBAM for crop pest identification[J]. Computer Systems?&?Applications, 2023, 32(7): 261-268.
[14] 沈怀艳, 吴云. 基于MSFA-Net的肝脏CT图像分割方法[J]. 计算机科学与探索, 2023, 17(3): 646-656.
SHEN H Y, WU Y. Liver CT image segmentation method based on MSFA-Net[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656.
[15] 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610.
XIA X B, XIAO Y F, LIU Y. Long text generation adversarial network model with self-attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610.
[16] 程艳, 蔡壮, 吴刚, 等. 结合自注意力特征过滤分类器和双分支GAN的面部表情识别[J]. 模式识别与人工智能, 2022, 35(3): 243-253.
CHENG Y, CAO Z, WU G, et al. Facial expression recognition combining self-attention feature filtering classifier and two-branch GAN[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 243-253.
[17] JIA L Q, WANG T. MobileNet-CA-YOLO: an improved YOLOv7 based on the MobileNetV3 and attention mechanism for rice pests and diseases detection[J]. Agriculture, 2023, 13(7): 1285.
[18] XIANG Q C, HUANG X N. Yolo-Pest: ?an?insect?pest?object detection algorithm via CAC3 module[J]. Sensors, 2023, 23(6): 3221.
[19] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient?channel?attention?for?deep?convolutional?neural?networks[J]. arXiv:1910.03151, 2019.
[20] FENG C, YAN Y. Exploring separable attention for multi-contrast MR image super-resolution[J]. arXiv:2109.01664, 2021.
[21] HE K, CHEN X. Masked autoencoders are scalable vision learners[J]. arXiv:2111.06377, 2021.
[22] HJELMAS E, LOW B K. Face detection: a survey[J]. Computer Vision and Image Understanding, 2001(83): 236-274.
[23] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[EB/OL]. (2008)[2023-03-10]. https://api.semanticscholar.org/CorpusID:88166.
[24] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[25] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
[26] TSUNG Y L, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755.
[27] EVERINGHAM M, GOOL L V, CHRISTOPHER K I W, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[28] DENG J, DONG W, SOCHERE R, et al. ImageNet: a large scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 248-255.
[29] LAO S, WANG D, LI F, et al. Human running detection: benchmark and baseline[J]. Computer Vision and Image Understanding, 2016, 153: 143-150.
[30] LIU X, DENG Z, LU H, et al. Benchmark for road marking detection: dataset specification and performance baseline[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems, Yokohama, 2017: 1-6.
[31] NAUDE J, JOUBERT D. The aerial elephant dataset: a new public benchmark for aerial object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 16-20, 2019: 48-55.
[32] WOSNER O, FARJON G, BARHILLEL A. Object detection in agricultural contexts: a multiple resolution benchmark and comparison to human[J]. Computers and Electronics in Agriculture, 2021, 189: 106404.
[33] WOO S, PARK J. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[34] XU H, DING S. Masked autoencoders are robust data augmentors[J]. arXiv:2206.04846, 2022. |