[1] YUN S C, PARASURAMAN S, GANAPATHY V. Dynamic path planning algorithm in mobile robot navigation[C]//Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications, 2011: 364-369.
[2] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
[3] TSE P W, LANG S, LEUNG K C, et al. Design of a navigation system for a household mobile robot using neural networks[C]//Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, 1998: 2151-2156.
[4] JARADAT M A K, AL-ROUSAN M, QUADAN L. Reinforcement based mobile robot navigation in dynamic environment[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(1): 135-149.
[5] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013.
[6] TAI L, LIU M. Towards cognitive exploration through deep reinforcement learning for mobile robots[J]. arXiv:1610.01733, 2016.
[7] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 2094-2100.
[8] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv:1509.02971, 2015.
[9] PENG X B, BERSETH G, VAN DE PANNE M. Terrain-adaptive locomotion skills using deep reinforcement learning[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 1-12.
[10] BELLMAN R E. Adaptive control processes: a guided tour[M]. New Jersey, USA: Princeton University Press, 2015.
[11] LOBOS-TSUNEKAWA K, LEIVA F, RUIZ-DEL-SOLAR J. Visual navigation for biped humanoid robots using deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3247-3254.
[12] HU X D, HUANG X X, HU T J, et al. MRDDGG algorithms for path planning of free-floating space robot[C]//Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), 2018: 1079-1082.
[13] 李明振. 室内全向移动机器人路径规划研究[D]. 南昌: 华东交通大学, 2022.
LI M Z. Research on path planning of indoor omnidirectional mobile robot[D]. Nanchang: East China Jiaotong University, 2022.
[14] 郝崇清, 任博恒, 赵庆鹏, 等. 基于改进的DDPG算法的蛇形机器人路径规划方法[J]. 河北科技大学学报, 2023, 44(2): 165-176.
HAO C Q, REN B H, ZHAO Q P, et al. Path planning method of snake-like robot based on improved DDPG algorithm[J]. Journal of Hebei University of Science and Technology, 2023, 44(2): 165-176.
[15] 陈佳盼, 郑敏华. 基于深度强化学习的机器人操作行为研究综述[J]. 机器人, 2022, 44(2): 236-256.
CHEN J P, ZHENG M H. A survey of robot manipulation behavior research based on deep reinforcement learning[J]. Robot, 2022, 44(2): 236-256.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[17] THOMAS D G, OLSHANSKYI D, KRUEGER K, et al. Interpretable UAV collision avoidance using deep reinforcement learning[J]. arXiv:2105.12254, 2021.
[18] PAN X, GE C, LU R, et al. On the integration of self-attention and convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 815-825.
[19] ANDRYCHOWICZ M, WOLSKI F, RAY A, et al. Hindsight experience replay[C]//Advances in Neural Information Processing Systems, 2017: 5048-5058. |