Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (19): 167-177.DOI: 10.3778/j.issn.1002-8331.2307-0011
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
LI Baozhen, KONG Qianwen, SU Yuwei
Online:
2024-10-01
Published:
2024-09-30
李保珍,孔倩文,苏雨薇
LI Baozhen, KONG Qianwen, SU Yuwei. Anomaly Detection on Attribute Network by Multi-Angle Contrastive Learning[J]. Computer Engineering and Applications, 2024, 60(19): 167-177.
李保珍, 孔倩文, 苏雨薇. 基于多角度对比学习的属性网络异常检测[J]. 计算机工程与应用, 2024, 60(19): 167-177.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0011
[1] LIU Y, LI Z, PAN S, et al. Anomaly detection on attributed networks via contrastive self-supervised learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2378-2392. [2] LIU N, HUANG X, HU X. Accelerated local anomaly detection via resolving attributed networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2337-2343. [3] AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 626-688. [4] XU Z, HUANG X, ZHAO Y, et al. Contrastive attributed network anomaly detection with data augmentation[C]//Proceedings of the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2022: 444-457. [5] ROOPAK, SHAH, EDUARD, et al. Signature verification using a “siamese” time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4): 669-688. [6] BREUNIG M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104. [7] PEROZZI B, AKOGLU L. Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2016: 207-215. [8] ZHANG M, CHEN Y. Weisfeiler-Lehman neural machine for link prediction[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 575-583. [9] 罗世杰, 吕文韬, 李凡, 等. 融合拓扑和属性的动态网络链路预测方法[J]. 计算机工程与应用, 2023, 59(5): 122-130. LUO S J, LYU W T, LI F, et al. Dynamic network link prediction method for fusion topology and attributes[J]. Computer Engineering and Applications, 2023, 59(5): 122-130. [10] GAO J, LIANG F, FAN W, et al. On community outliers and their efficient detection in information networks[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 813-822. [11] 吴越, 王英, 王鑫, 等. 基于超图卷积的异质网络半监督节点分类[J]. 计算机学报, 2021, 44(11): 2248-2260. WU Y, WANG Y, WANG X, et al. Motif-based hypergraph convolution network for semi-supervised node classification on heterogeneous graph[J]. Chinese Journal of Computers, 2021, 44(11): 2248-2260. [12] ABU-EL-HAIJA S, KAPOOR A, PEROZZI B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification[C]// Proceedings of the 35th Uncertainty in Artificial Intelligence Conference: Vol 115. New York: PMLR, 2020: 841-851. [13] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [14] 李忠, 靳小龙, 王亚杰, 等. 属性网络中基于变分图自编码器的异常节点检测方法[J]. 模式识别与人工智能, 2022, 35(1): 17-25. LI Z, JIN X L, WANG Y J, et al. Anomaly node detection method based on variational graph auto-encoders in attribute networks [J]. Pattern Recognition and Artificial Intelligence, 2022, 35(1): 17-25. [15] LI J, DANI H, HU X, et al. Radar: residual analysis for anomaly detection in attributed networks[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2152-2158. [16] ZHU D, MA Y, LIU Y. Anomaly detection with deep graph autoencoders on attributed networks[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC). Piscataway: IEEE, 2020: 1-6. [17] FAN H, ZHANG F, LI Z. AnomalyDAE: dual autoencoder for anomaly detection on attributed networks[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2020: 5685-5689. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2017: 6000-6010. [19] DING K, LI J, BHANUSHALI R, et al. Deep anomaly detection on attributed networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2019: 594-602. [20] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [21] 张伊扬, 钱育蓉, 陶文彬, 等. 基于深度学习的属性图异常检测综述[J]. 计算机工程与应用, 2022, 58(19): 1-13. ZHANG Y Y, QIAN Y R, TAO W B, et al. Survey of attribute graph anomaly detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(19): 1-13. [22] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning. New York: PMLR, 2020: 1597-1607. [23] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[J]. arXiv:1809.10341, 2018. [24] PENG Z, HUANG W, LUO M, et al. Graph representation learning via graphical mutual information maximization[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 259-270. [25] ZHU Y, XU Y, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080. [26] CHEN F, WANG Y C, WANG B, et al. Graph representation learning: a survey[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9: e15. [27] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1067-1077. [28] TONG H, FALOUTSOS C, PAN J Y. Fast random walk with restart and its applications[C]//Proceedings of the Sixth International Conference on Data Mining (ICDM’06). Piscataway: IEEE, 2006: 613-622. [29] TANG L, LIU H. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 817-826. [30] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93. [31] TANG J, ZHANG J, YAO L, et al. ArnetMiner: extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 990-998. [32] JIN M, LIU Y, ZHENG Y, et al. ANEMONE: graph anomaly detection with multi-scale contrastive learning[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 3122-3126. [33] DEECKE L, RUFF L, VANDERMEULEN R A, et al. Deep anomaly detection by residual adaptation[J]. arXiv:2010.02310, 2020. [34] PANG G, SHEN C, JIN H, et al. Deep weakly-supervised anomaly detection[J]. arXiv:1910.13601, 2019. [35] PENG Z, LUO M, LI J, et al. ANOMALOUS: a joint modeling approach for anomaly detection on attributed networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3513-3519. [36] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |
[1] | YANG You, YAO Lu. Image-Guided Augmentation Visual Question Answering Model Combined with Contrastive Learning [J]. Computer Engineering and Applications, 2024, 60(7): 157-166. |
[2] | HU Zhiqiang, LI Pengjun, WANG Jinlong, XIONG Xiaoyun. Research on Policy Tools Classification Based on ChatGPT Augmentation and Supervised Contrastive Learning [J]. Computer Engineering and Applications, 2024, 60(7): 292-305. |
[3] | ZHENG Yang, WU Yongming, XU An. Vectorized Feature Space Embedded Clustering Based on Contrastive Learning [J]. Computer Engineering and Applications, 2024, 60(4): 211-219. |
[4] | WANG Lulu, XU Zengmin, ZHANG Xuelian, MENG Ruxing, LU Tao. Cross-View Temporal Contrastive Learning for Self-Supervised Video Representation [J]. Computer Engineering and Applications, 2024, 60(18): 158-166. |
[5] | XU Yunfeng, FAN Hexun. Self-Supervised Graph Representation Learning Method Based on Data and Feature Augmentation [J]. Computer Engineering and Applications, 2024, 60(17): 148-157. |
[6] | WANG Jinghong, WANG Hui. Self-Supervised Contrastive Attributed Graph Joint Representation Clustering [J]. Computer Engineering and Applications, 2024, 60(16): 133-142. |
[7] | MIAO Borui, XU Yunfeng, ZHAO Shaojie, WANG Jialin. C-BGA: Multimodal Speech Emotion Recognition Network Combining Contrastive Learning [J]. Computer Engineering and Applications, 2024, 60(16): 168-176. |
[8] | HUANG Xiuli, YU Pengfei, GAO Xianzhou. Secure Aggregation Scheme for Horizontal Fedetated Learning System [J]. Computer Engineering and Applications, 2024, 60(14): 294-305. |
[9] | CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang. Survey of Application of Graph Neural Network in Anomaly Detection [J]. Computer Engineering and Applications, 2024, 60(13): 51-65. |
[10] | WU Yanwen, TAN Xichen, GE Di, HAN Yuan, XIONG Xujie, CHEN Yudi. Combining Reconstruction and Graph Prediction for Multi-Dimensional Time Series Anomaly Detection Framework [J]. Computer Engineering and Applications, 2024, 60(13): 301-310. |
[11] | XIE Wei, LU Shida, SHI Kuanzhi, WANG Honglan, GU Rongbin, HUANG Jun, LI Jing. Anomaly Detection Method for Industrial IoT Timing Data [J]. Computer Engineering and Applications, 2024, 60(12): 270-282. |
[12] | QI Sheng, GAO Rong, SHAO Xiongkai, WU Xinyun, WAN Xiang, GAO Haiyan. Hypergraph-Based Meta-Path Explanation Contrastive Learning for Group Recommendation [J]. Computer Engineering and Applications, 2024, 60(11): 268-280. |
[13] | GAO Xiaoyu, ZHAO Xiaoyong, WANG Lei. Self-Supervised Tabular Data Anomaly Detection Method Based on Knowledge Enhancement [J]. Computer Engineering and Applications, 2024, 60(10): 140-147. |
[14] | CAI Tijian, LIU Wenxin, CHEN Fuchun, CHEN Jun, LUO Ciyong. Face Liveness Detection Algorithm Based on Metric Learning-Cross Batch Storage Mechanism [J]. Computer Engineering and Applications, 2023, 59(23): 183-190. |
[15] | SHANG Ying, HAN Chao, WU Kewei. Personalized Speech Synthesis Based on Separated Contrastive Learning [J]. Computer Engineering and Applications, 2023, 59(22): 158-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||