[1] 李浩, 张亚钏, 康雁, 等. 融合循环知识图谱和协同过滤电影推荐算法[J]. 计算机工程与应用, 2020, 56(2): 106-114.
LI H, ZHANG Y C, KANG Y, et al. Fusion recurrent knowledge graph and collaborative filtering movie recommendation algorithm[J]. Computer Engineering and Applications, 2020, 56(2): 106-114.
[2] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representations, 2016.
[3] 邱叶, 邵雄凯, 高榕, 等. 基于注意力门控神经网络的社会化推荐算法[J]. 计算机工程与应用, 2022, 58(5): 112-118.
QIU Y, SHAO X K, GAO R, et al. Social recommendation algorithm based on attention gated neural network[J]. Computer Engineering and Applications, 2022, 58(5): 112-118.
[4] SANKAR A, WU Y, WU Y, et al. Groupim: a mutual information maximization framework for neural group recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1279-1288.
[5] HE Z X, CHOW C Y, ZHANG J D. GAME: learning graphical and attentive multi-view embeddings for occasional group recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval , 2020: 649-658.
[6] 梅雨竹, 胡竹林, 朱欣娟. 融合双层注意力机制的群组偏好融合策略研究[J]. 计算机工程与应用, 2023, 59(9): 272-279.
MEI Y Z, HU Z L, ZHU X J, et al. Research on group preference fusion strategies incorporating two-layer attention mechanisms[J]. Computer Engineering and Applications, 2023, 59(9): 272-279.
[7] LIM S H, JEONG Y W, PARK K H. Data placement and prefetching with accurate bit rate control for interactive media server[J]. ACM Transactions on Multimedia Computing, Communications, and Applications , 2008: 4(3): 1-25.
[8] CHEN Z, CAFARELLA M. Integrating spreadsheet data via accurate and low-effort extraction[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 1126-1135.
[9] YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 7370-7377.
[10] HE W, JIANG Z, ZHANG C, et al. CurvaNet: geometric deep learning based on directional curvature for 3D shape analysis[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 2214-2224.
[11] CAO D, HE X, MIAO L, et al. Attentive group recommendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 645-654.
[12] YIN H, WANG Q, ZHENG K, et al. Social influence-based group representation learning for group recommendation[C]//Proceedings of the 2019 IEEE 35th International Conference on Data Engineering, 2019: 566-577.
[13] GUO L, YIN H, WANG Q, et al. Group recommendation with latent voting mechanism[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering, 2020: 121-132.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[15] LE-KHAC P H, HEALY G, SMEATON A F. Contrastive representation learning: a framework and review[J]. IEEE Access, 2020, 8: 193907-193934.
[16] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 173-182.
[17] CAO D, HE X, MIAO L, et al. Social-enhanced attentive group recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(3): 1195-1209.
[18] ZHANG J, GAO M, YU J, et al. Double-scale self-supervised hypergraph learning for group recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 2557-2567.
[19] YIN H, WANG Q, ZHENG K, et al. Overcoming data sparsity in group recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(7): 3447-3460.
[20] GUO J, ZHU Y, LI A, et al. A social influence approach for group user modeling in group recommendation systems[J]. IEEE Intelligent Systems, 2016, 31(5): 40-48.
[21] FU T, LEE W C, LEI Z. Hin2vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017: 1797-1806.
[22] DONG Y, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 135-144.
[23] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 635-644.
[24] WU C, WU F, HUANG Y, et al. User-as-graph: user modeling with heterogeneous graph pooling for news recommendation[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 1624-1630.
[25] AWAYSHEH F M, ALAZAB M, GARG S, et al. Big data resource management & networks: taxonomy, survey, and future directions[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2098-2130.
[26] FU X Y, ZHANG J N, MENG Z Q, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the Association for Computing Machinery, 2020: 2331-2341.
[27] LIU M, SHI J, LI Z, et al. Towards better analysis of deep convolutional neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(1): 91-100.
[28] SARANYA T, SRIDEVI S, DEISY C, et al. Performance analysis of machine learning algorithms in intrusion detection system: a review[J]. Procedia Computer Science, 2020, 171: 1251-1260.
[29] SINGH A, SENGUPTA S, LAKSHMINARAYANAN V. Explainable deep learning models in medical image analysis[J]. arXiv:2005.13799, 2020.
[30] ARRIETA B A, DíAZ RODRíGUEZ N, DEL SER J, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(3): 1566-2535.
[31] WANG L, LIM E P, LIU Z, et al. Explanation guided contrastive learning for sequential recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022: 2017-2027.
[32] VINH TRAN L, NGUYEN PHAM T A, TAY Y, et al. Interact and decide: medley of sub-attention networks for effective group recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 255-264. |