[1] 任婷婷, 鲁统宇, 崔俊. 基于改进AdaBoost算法的动态不平衡财务预警模型[J]. 数量经济技术经济研究, 2021, 38(11): 182-197.
REN T T, LU T Y, CUI J. Dynamic imbalanced financial distress prediction model based on improved AdaBoost algorithm[J]. Journal of Quantitative & Technological Economics, 2021, 38 (11): 182-197.
[2] 王宗胜, 尚姣姣. 我国制造业上市公司财务困境预警分析[J]. 统计与决策, 2015(3): 174-177.
WANG Z S, SHANG J J. Analysis financial crisis of China’s manufacturing listed companies[J]. Statistics and Decision, 2015(3): 174-177.
[3] 杨旸, 林辉. 基于离散Hopfield网络的上市公司财务困境预警研究[J]. 华东经济管理, 2016, 30(12): 156-162.
YANG Y, LIN H. An early warning research on financial distress of listed companies based on discrete Hopfield network [J]. East China Economic Management, 2016, 30(12): 156-162.
[4] 钱爱民, 张淑君, 程幸. 基于自由现金流量的财务预警指标体系的构建与检验——来自中国机械制造业A股上市公司的经验数据[J]. 中国软科学, 2008(9): 148-155.
QIAN A M, ZHANG S J, CHENG X. Construction and examination of financial early-warning system based on free cash flow: evidence from China’s a share listed companies in manufacturing industry[J]. China Soft Science, 2008(9): 148-155.
[5] 张亮, 张玲玲, 陈懿冰, 等. 基于信息融合的数据挖掘方法在公司财务预警中的应用[J]. 中国管理科学, 2015, 23(10): 170-176.
ZHANG L, ZHANG L L, CHEN Y B, et al. Based on information fusion technique with data mining in the application of financial early-warning[J]. Chinese Journal of Management Science, 2015, 23 (10): 170-176.
[6] 王成章, 白晓明. 基于图结构扩散界面理论的财务预警模型[J]. 数理统计与管理, 2020, 39(5): 893-901.
WANG C Z, BAI X M. Financial early-warning model based on diffuse interface theory on graphs[J]. Journal of Applied Statistics and Management, 2020, 39(5): 893-901.
[7] 郭斌, 戴小敏, 曾勇, 等. 我国企业危机预警模型研究—以财务与非财务因素构建[J]. 金融研究, 2006(2): 78-87.
GUO B, DAI X M, ZENG Y, et al. On the financial distress warning model[J]. Journal of Financial Research, 2006(2): 78-87.
[8] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022(8): 152-170.
YANG Z H, ZHANG P M, LIN S H. Systemic risk and corporate financial distress forecasting from the new perspective of machine learning[J]. Journal of Financial Research, 2022 (8): 152-170.
[9] 余浪, 李乐, 李秉成, 等. 管理者能力、宏观经济周期与企业财务危机——基于调节、路径与预警的分析[J]. 软科学, 2022, 36(4): 118-124.
YU L, LI L, LI B C, et al. Managerial competence, macroeconomic cycle and corporate financial crisis: analysis based on regulation, path and early warning[J]. Soft Science, 2022, 36(4): 118-124.
[10] 唐千淇. 试论宏观经济政策对外贸企业商品流通管理的影响[J]. 商业经济研究, 2022(6): 160-163.
TANG Q Q. The impact of macroeconomic policies on the management of commodity circulation of foreign trade enterprises[J]. Journal of Commercial Economics, 2022(6): 160-163.
[11] 李惠青, 刘倩, 汪涛. 新贸易壁垒下外贸型中小企业财务风险预警机制[J]. 国际商务财会, 2020(3): 22-25.
LI H Q, LIU Q, WANG T. Financial risk early warning mechanism of small and medium-sized foreign trade enterprises under new trade barriers[J]. Finance and Accounting for International Commerce, 2020(3): 22-25.
[12] 卢永艳. 宏观经济因素对企业财务困境风险影响的实证分析[J]. 宏观经济研究, 2013(5): 53-58.
LU Y Y. Empirical analysis of the impact of macroeconomic factors on the risk of financial distress in enterprises[J]. Macroeconomics, 2013 (5): 53-58.
[13] ALTMAN E I. Financial ratios, discriminate analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23(4): 589-609.
[14] ALTMAN E I, HALDEMAN R G, NARAYANAN P. ZETA analysis: a new model to identify bankruptcy risk of corporations[J]. Journal of Banking and Finance, 1977(6): 29-54.
[15] 周首华, 杨济华, 王平. 论财务危机的预警分析——F分数模式[J]. 会计研究, 1996(8): 8-11.
ZHOU S H, YANG J H, WANG P. Analysis of financial crisis warning: failure score model[J]. Accounting Research, 1996(8): 8-11.
[16] BEAVER W H. Financial ratios as predictors of failure: empirical research in accounting[J]. Journal of Accounting Research, 1966, 32(5): 69-109.
[17] 杨淑娥, 徐伟刚. 上市公司财务预警模型——Y分数模型的实证研究[J]. 中国软科学, 2003(1): 56-60.
YANG S E, XU W G. Financial affairs in early warning model for listed companies——an empirical study on Y market’s model[J]. China Soft Science, 2003(1): 56-60.
[18] KIM S Y, UPNEJA A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models[J]. Economic Modelling, 2014, 36: 354-362.
[19] 杨贵军, 周亚梦, 孙玲莉. 基于Benford-Logistic模型的企业财务风险预警方法[J]. 数量经济技术经济研究, 2019, 36(10): 149-165.
YANG G J, ZHOU Y M, SUN L L. Enterprise financial early warning method based on benford-logistic model[J]. Journal of Quantitative & Technological Economics, 2019, 36(10): 149-165.
[20] 倪志伟, 薛永坚, 倪丽萍, 等. 基于流形学习的多核SVM财务预警方法研究[J]. 系统工程理论与实践, 2014, 34(10): 2666-2674.
NI Z W, XUE Y J, NI L P, et al. Research of multiple kernel SVM based on manifold learning in financial distress prediction[J]. Systems Engineering-Theory & Practice, 2014, 34(10): 2666-2674.
[21] 孙玲莉, 杨贵军, 王禹童. 基于Benford律的随机森林模型及其在财务风险预警的应用[J]. 数量经济技术经济研究, 2021, 38(9): 159-177.
SUN L L, YANG G J, WANG Y T. Random forest model based on Benford’s law and its application in financial early warning[J]. Journal of Quantitative & Technological Economics, 2021, 38(9): 159-177.
[22] 梁龙跃, 刘波. 基于文本挖掘的上市公司财务风险预警研究[J]. 计算机工程与应用, 2022, 58(4): 255-266.
LIANG L Y, LIU B. Research on financial risk early warning of listed companies based on text mining[J]. Computer Engineering and Applications, 2022, 58 (4): 255-266.
[23] OHLSON J A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Jounal of Accounting Research, 1980, 18(1): 109-131.
[24] RIBEIRO B, SILVA C, VIEIRA A, et al. Financial distress model prediction using SVM+[C]//Proceedings of the International Joint Conference on Neural Networks, 2010: 1-7.
[25] 张培荣. 基于XGBoost模型的企业财务危机预警研究[J]. 财会通讯, 2019(35): 109-112.
ZHANG P R. Research on early warning of enterprise financial crisis based on XGBoost model[J]. Communication of Finance and Accounting, 2019(35): 109-112.
[26] 郑玉华, 崔晓东. 公司财务预警LOGIT模型最优分界点实证研究[J]. 商业研究, 2014(6): 76-82.
ZHENG Y H, CUI X D. An empirical study on the optimal critical value of LOGIT model for company financial early warning[J]. Commercial Research, 2014(6): 76-82.
[27] 闫达文, 李存, 迟国泰. 基于混频数据的中国上市公司财务困境动态预测研究[J]. 中国管理科学, 2024, 32(1): 1-12.
YAN D W, LI C, CHI G T. Dynamic financial distress prediction for Chinese listed companies based on the mixed frequency data[J]. Chinese Journal of Management Science, 2024, 32(1): 1-12.
[28] 黎旭, 陈家兑, 吴永明, 等. 基于改进SMOTE的制造过程不平衡数据分类策略[J]. 计算机工程与应用, 2022, 58(16): 284-291.
LI X, CHEN J D, WU Y M, et al. Classification strategy of imbalanced data in manufacturing process based on improved SMOTE[J]. Computer Engineering and Applications, 2022, 58(16): 284-291.
[29] SUE K L, TSAI C F, CHIU A. The data sampling effect on financial distress prediction by single and ensemble learning techniques[J]. Communications in Statistics-Theory and Methods, 2021: 1-12.
[30] 罗康洋, 王国强. 基于改进的MRMR算法和代价敏感分类的财务预警研究[J]. 统计与信息论坛, 2020, 35(3): 77-85.
LUO K Y, WANG G Q. The research on financial early warning based on the improved MRMR algorithms and cost sensitive classification[J]. Journal of Statistics and Information, 2020, 35(3): 77-85.
[31] 王乐, 韩萌, 李小娟, 等. 不平衡数据集分类方法综述[J]. 计算机工程与应用, 2021, 57(22): 42-52.
WANG L, HAN M, LI X J, et al. Review of classification methods for unbalanced data sets[J]. Computer Engineering and Applications, 2021, 57(22): 42-52.
[32] 高燕, 杜玥, 曾森. 基于BP神经网络的制造企业财务风险预警研究[J]. 会计之友, 2023(1): 62-70.
GAO Y, DU Y, ZENG S. Research on financial risk early warning of manufacturing enterprises based on BP neural network[J]. Friends of Accounting, 2023(1): 62-70.
[33] 钟灵芝. 基于神经网络模型的我国外贸上市企业财务危机预警的研究[D]. 天津: 天津大学, 2012.
ZHONG L Z. Research on finance warning of China’s foreign trade enterprises based on neural network model[D]. Tianjin: Tianjin University, 2012. |