Hybrid Sampling Method for Overlap Region of ICS Imbalanced Data
GAO Bing, GU Zhaojun, ZHOU Jingxian, SUI He
1.Information Security Evaluation Center, Civil Aviation University of China, Tianjin 300300, China
2.College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
3.College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
GAO Bing, GU Zhaojun, ZHOU Jingxian, SUI He. Hybrid Sampling Method for Overlap Region of ICS Imbalanced Data[J]. Computer Engineering and Applications, 2023, 59(19): 305-315.
[1] 赖英旭,刘增辉,蔡晓田,等.工业控制系统入侵检测研究综述[J].通信学报,2017,38(2):143-156.
LAI Y X,LIU Z H,CAI X T,et al.Research on intrusion detection of industrial control system[J].Journal on Communications,2017,38(2):143-156.
[2] 陶耀东,李宁,曾广圣.工业控制系统安全综述[J].计算机工程与应用,2016,52(13):8-18.
TAO Y D,LI N,ZENG G S.Review of industrial control systems security[J].Computer Engineering and Applications,2016,52(13):8-18.
[3] 杨挺,刘亚闯,刘宇哲,等.信息物理系统技术现状分析与趋势综述[J].电子与信息学报,2021,43(12):3393-3406.
YANG T,LIU Y C,LIU Y Z,et al.Review on cyber-physical system:technology analysis and trends[J].Journal of Electronics & Information Technology,2021,43(12):3393-3406.
[4] 石乐义,朱红强,刘祎豪,等.基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J].计算机研究与发展,2019,56(11):2330-2338.
SHI L Y,ZHU H Q,LIU Y H,et al.Intrusion detection of industrial control system based on correlation information entropy and CNN-BiLSTM[J].Journal of Computer Research and Development,2019,56(11):2330-2338.
[5] 陈冬青,张普含,王华忠.基于MIKPSO-SVM方法的工业控制系统入侵检测[J].清华大学学报(自然科学版),2018,58(4):380-386.
CHEN D Q,ZHANG P H,WANG H Z.Intrusion detection for industrial control systems based on an improved SVM method[J].Journal of Tsinghua University(Science & Technology),2018,58(4):380-386.
[6] 和湘,刘晟,姜吉国.基于机器学习的入侵检测方法对比研究[J].信息网络安全,2018(5):1-11.
HE X,LIU S,JIANG J G.Comparative study of intrusion detection methods based on machine learning[J].Netinfo Security,2018(5):1-11.
[7] 王振东,张林,李大海.基于机器学习的物联网入侵检测系统综述[J].计算机工程与应用,2021,57(4):18-27.
WANG Z D,ZHANG L,LI D H.Survey of intrusion detection systems for internet of things based on machine learning[J].Computer Engineering and Applications,2021,57(4):18-27.
[8] 张文安,洪榛,朱俊威,等.工业控制系统网络入侵检测方法综述[J].控制与决策,2019,34(11):2277-2288.
ZHANG W A,HONG Z,ZHU J W,et al.A survey of network intrusion detection methods for industrial control systems[J].Control and Decision,2019,34(11):2277-2288.
[9] FU G H,WU Y J,ZONG M J,et al.Feature selection and classification by minimizing overlap degree for class-imbalanced data in metabolomics[J].Chemometrics and Intelligent Laboratory Systems,2020,196:103906.
[10] LEE H K,KIM S B.An overlap-sensitive margin classifier for imbalanced and overlapping data[J].Expert Systems with Applications,2018,98:72-83.
[11] 崔彩霞,曹付元,梁吉业.基于密度峰值聚类的自适应欠采样方法[J].模式识别与人工智能,2020,33(9):811-819.
CUI C X,CAO F Y,LIANG J Y.Adaptive undersampling based on density peak clustering[J].Pattern Recognition and Artificial Intelligence,2020,33(9):811-819.
[12] VUTTIPITTAYAMONGKOL P,ELYAN E,PETROVSKI A.On the class overlap problem in imbalanced data classification[J].Knowledge-Based Systems,2021,212:106631.
[13] PAN T,ZHAO J,WU W,et al.Learning imbalanced datasets based on SMOTE and Gaussian distribution[J].Information Sciences,2020,512:1214-1233.
[14] FERNáNDEZ A,GARCIA S,HERRERA F,et al.SMOTE for learning from imbalanced data:progress and challenges,marking the 15-year anniversary[J].Journal of Artificial Intelligence Research,2018,61:863-905.
[15] 吴园园,申立勇.基于类重叠度欠采样的不平衡模糊多类支持向量机[J].中国科学院大学学报,2018,35(4):536-543.
WU Y Y,SHEN L Y.Imbalanced fuzzy multiclass support vector machine algorithm based on class-overlap degree undersampling[J].Journal of University of Chinese Academy of Sciences,2018,35(4):536-543.
[16] AGUSTIANTO K,DESTARIANTO P.Imbalance data handling using neighborhood cleaning rule(NCL) sampling method for precision student modeling[C]//Proceedings of the International Conference on Computer Science,Information Technology,and Electrical Engineering(ICOMITEE),2019:86-89.
[17] 郑建华,李小敏,刘双印,等.融合级联上采样与下采样的改进随机森林不平衡数据分类算法[J].计算机科学,2021,48(7):145-154.
ZHENG J H,LI X M,LIU S Y,et al.Improved random forest imbalance data classification algorithm combining cascaded up?samplings and down-sampling[J].Computer Science,2021,48(7):145-154.
[18] VUTTIPITTAYAMONGKOL P,ELYAN E,PETROVSKI A,et al.Overlap-based undersampling for improving imbalanced data classification[C]//Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning,2018:689-697.
[19] DEVI D,BISWAS S K,PURKAYASTHA B.Learning in presence of class imbalance and class overlapping by using one-class SVM and undersampling technique[J].Connection Science,2019,31(2):105-142.
[20] LI Z,HUANG M,LIU G,et al.A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection[J].Expert Systems with Applications,2021,175:114750.
[21] TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
[22] RAJAB A,HUANG C T,AL-SHARGABI M,et al.Countering burst header packet flooding attack in optical burst switching network[C]//Proceedings of the International Conference on Information Security Practice and Experience,2016:315-329.
[23] BEAVER J M,BORGES-HINK R C,BUCKNER M A.An evaluation of machine learning methods to detect malicious SCADA communications[C]//Proceedings of the 12th International Conference on Machine Learning and Applications,2013:54-59.
[24] PAN S,MORRIS T,ADHIKARI U.Developing a hybrid intrusion detection system using data mining for power systems[J].IEEE Transactions on Smart Grid,2015,6(6):3104-3113.
[25] MEENA G,CHOUDHARY R R.A review paper on IDS classification using KDD 99 and NSL KDD dataset in WEKA[C]//Proceedings of the International Conference on Computer,Communications and Electronics,2017:553-558.
[26] WATTENBERG M,VIéGAS F,JOHNSON I.How to use t-SNE effectively[J].Distill,2016,1(10):e2.
[27] KURITA T.Principal component analysis(PCA)[M]//Computer vision:a reference guide.US:Springer,2014:636-639.